Skip to main content
Log in

Transcriptional profile of GTP-mediated differentiation of C2C12 skeletal muscle cells

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Several purine receptors have been localised on skeletal muscle membranes. Previous data support the hypothesis that extracellular guanosine 5′-triphosphate (GTP) is an important regulatory factor in the development and function of muscle tissue. We have previously described specific extracellular binding sites for GTP on the plasma membrane of mouse skeletal muscle (C2C12) cells. Extracellular GTP induces an increase in intracellular Ca2+ concentrations that results in membrane hyperpolarisation through Ca2+-activated K+ channels, as has been demonstrated by patch-clamp experiments. This GTP-evoked increase in intracellular Ca2+ is due to release of Ca2+ from intracellular inositol-1,4,5-trisphosphate-sensitive stores. This enhances the expression of the myosin heavy chain in these C2C12 myoblasts and commits them to fuse into multinucleated myotubes, probably via a phosphoinositide-3-kinase-dependent signal-transduction mechanism. To define the signalling of extracellular GTP as an enhancer or modulator of myogenesis, we investigated whether the gene-expression profile of differentiated C2C12 cells (4 and 24 h in culture) is affected by extracellular GTP. To investigate the nuclear activity and target genes modulated by GTP, transcriptional profile analysis and real-time PCR were used. We demonstrate that in the early stages of differentiation, GTP up-regulates genes involved in different pathways associated with myogenic processes, including cytoskeleton structure, the respiratory chain, myogenesis, chromatin reorganisation, cell adhesion, and the Jak/Stat pathway, and down-regulates the mitogen-activated protein kinase pathway. GTP also increases the expression of three genes involved in myogenesis, Pp3ca, Gsk3b, and Pax7. Our data suggests that in the myogenic C2C12 cell line, extracellular GTP acts as a differentiative factor in the induction and sustaining of myogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

[Ca2+]i :

Intracellular calcium ion concentration

DM:

Standard differentiating medium

GTP:

Guanosine 5′-triphosphate

MRFs:

Myogenic regulatory factors

MyHC:

Myosin heavy chain

SM:

Synthetic differentiating medium

RB2:

Reactive blue 2

References

  1. Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S et al (1991) The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251:761–766

    Article  PubMed  CAS  Google Scholar 

  2. Chambers RL, McDermott JC (1996) Molecular basis of skeletal muscle regeneration. Can J Appl Physiol 21:155–184

    Article  PubMed  CAS  Google Scholar 

  3. Anderson JE (1998) Murray L. Barr Award Lecture. Studies of the dynamics of skeletal muscle regeneration: the mouse came back! Biochem Cell Biol 76:13–26

    Article  PubMed  CAS  Google Scholar 

  4. McKinsey TA, Zhang CL, Olson EN (2001) Control of muscle development by dueling HATs and HDACs. Curr Opin Genet Dev 11:497–504

    Article  PubMed  CAS  Google Scholar 

  5. Megeney LA, Rudnicki MA (1995) Determination versus differentiation and the MyoD family of transcription factors. Biochem Cell Biol 73:723–732

    Article  PubMed  CAS  Google Scholar 

  6. Perry RL, Rudnicki MA (2000) Molecular mechanisms regulating myogenic determination and differentiation. Front Biosci 5:D750–D767

    Article  PubMed  CAS  Google Scholar 

  7. Friday BB, Mitchell PO, Kegley KM, Pavlath GK (2003) Calcineurin initiates skeletal muscle differentiation by activating MEF2 and MyoD. Differentiation 71:217–227

    Article  PubMed  CAS  Google Scholar 

  8. Miller JB, Schaefer L, Dominov JA (1999) Seeking muscle stem cells. Curr Top Dev Biol 43:191–219

    Article  PubMed  CAS  Google Scholar 

  9. Bailey P, Holowacz T, Lassar AB (2001) The origin of skeletal muscle stem cells in the embryo and the adult. Curr Opin Cell Biol 13:679–689

    Article  PubMed  CAS  Google Scholar 

  10. Lassar AB, Skapek SX, Novitch B (1994) Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal. Curr Opin Cell Biol 6:788–794

    Article  PubMed  CAS  Google Scholar 

  11. Molkentin JD, Olson EN (1996) Combinatorial control of muscle development by basic helix-loop-helix and MADSbox transcription factors. Proc Natl Acad Sci USA 93:9366–9373

    Article  PubMed  CAS  Google Scholar 

  12. Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000

    Article  PubMed  CAS  Google Scholar 

  13. Wright WE, Sassoon DA, Lin VK (1989) Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell 56:607–617

    Article  PubMed  CAS  Google Scholar 

  14. Braun T, Buschhausen-Denker G, Bober E, Tannich E, Arnold HH (1989) A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10 T1/2 fibroblasts. EMBO J 8:701–709

    PubMed  CAS  Google Scholar 

  15. Thayer MJ, Tapscott SJ, Davis RL, Wright WE, Lassar AB, Weintraub H (1989) Positive autoregulation of the myogenic determination gene MyoD1. Cell 58(2):241–248

    Article  PubMed  CAS  Google Scholar 

  16. Hasty P, Bradley A, Morris JH, Edmondson DG, Venuti JM, Olson EN, Klein WH (1993) Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364:501–506

    Article  PubMed  CAS  Google Scholar 

  17. Nabeshima Y, Hanaoka K, Hayasaka M, Esumi E, Li S, Nonaka I, Nabeshima Y (1993) Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364:532–535

    Article  PubMed  CAS  Google Scholar 

  18. Rudnicki MA, Jaenisch R (1995) The MyoD family of transcription factors and skeletal myogenesis. Bioessays 17:203–209

    Article  PubMed  CAS  Google Scholar 

  19. Lindon C, Montarras D, Pinset C (1998) Cell cycle-regulated expression of the muscle determination factor Myf5 in proliferating myoblasts. J Cell Biol 140:111–118

    Article  PubMed  CAS  Google Scholar 

  20. Hinterberger TJ, Sassoon DA, Rhodes SJ, Konieczny SF (1991) Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development. Dev Biol 147:144–156

    Article  PubMed  CAS  Google Scholar 

  21. Naya FS, Olson E (1999) MEF2: a transcriptional target for signalling pathways controlling skeletal muscle growth and differentiation. Curr Opin Cell Biol 11:683–688

    Article  PubMed  CAS  Google Scholar 

  22. Andres V, Walsh K (1996) Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. J Cell Biol 132:657–666

    Article  PubMed  CAS  Google Scholar 

  23. Franklin DS, Xiong Y (1996) Induction of p18INK4c and its predominant association with CDK4 and CDK6 during myogenic differentiation. Mol Biol Cell 7:1587–1599

    PubMed  CAS  Google Scholar 

  24. Tomczak KK, Marinescu VD, Ramoni MF, Sanoudou D, Montanaro F, Han M, Kunkel LM, Kohane IS, Beggs AH (2004) Expression profiling and identification of novel genes involved in myogenic differentiation. FASEB J 18(2):403–405

    PubMed  CAS  Google Scholar 

  25. Shen X, Collier JM, Hlaing M, Zhang L, Delshad EH, Bristow J, Bernstein HS (2003) Genome-wide examination of myoblast cell cycle withdrawal during differentiation. Dev Dyn 226(1):128–138

    Article  PubMed  CAS  Google Scholar 

  26. Pietrangelo T, Mariggiò MA, Lorenzon P et al (2002) Characterization of specific GTP binding sites in C2C12 mouse skeletal muscle cells. J Muscle Res Cell Motil 23:107–118

    Article  PubMed  CAS  Google Scholar 

  27. Pietrangelo T, Fioretti B, Mancinelli R, Catacuzzeno L, Franciolini F, Fanò G, Fulle S (2006) Extracellular guanosine-5′-triphosphate modulates myogenesis via intermediate Ca2+-activated K+ currents in C2C12 mouse cells. J Physiol 572(3):721–733

    PubMed  CAS  Google Scholar 

  28. Pietrangelo T, Guarnieri S, Fulle S, Fanò G, Mariggiò MA (2006) Signal transduction events induced by extracellular guanosine 5′ triphosphate in excitable cells. Purinergic Signal 2(4):633–636

    Article  PubMed  CAS  Google Scholar 

  29. Inoue K, Nakazawa K, Ohara-Imaizumi M, Obama T, Fujimori K, Takanaka A (1991) Antagonism by reactive blue 2 but not by brilliant blue G of extracellular ATP-evoked responses in PC12 phaeochromocytoma cells. Br J Pharmacol 102(4):851–854

    PubMed  CAS  Google Scholar 

  30. Moran JL, Li Y, Hill AA, Mounts WM, Miller CP (2002) Gene expression changes during mouse skeletal myoblast differentiation revealed by transcriptional profiling. Physiol Genomics 10(2):103–111

    PubMed  CAS  Google Scholar 

  31. Dulong S, Goudenege S, Vuillier-Devillers K, Manenti S, Poussard S, Cottin P (2004) Myristoylated alanine-rich C kinase substrate (MARCKS) is involved in myoblast fusion through its regulation by protein kinase Cα and calpain proteolytic cleavage. Biochem J 382:1015–1023

    Article  PubMed  CAS  Google Scholar 

  32. Wakabayashi-Takai E, Noguchi S, Ozawa E (2001) Identification of myogenesis-dependent transcriptional enhancers in promoter region of mouse gamma-sarcoglycan gene. Eur J Biochem 268(4):948–957

    Article  PubMed  CAS  Google Scholar 

  33. Musumeci O, Aguennouz M, Comi GP, Rodolico C, Autunno M, Bordoni A, Baratta S, Taroni F, Vita G, Toscano A (2007) Identification of the infant-type R631C mutation in patients with the benign muscular form of CPT2 deficiency. Neuromuscul Disord 17(11–12):960–963

    Article  PubMed  Google Scholar 

  34. Wieser T, Kraft B, Kress HG (2008) No carnitine palmitoyltransferase deficiency in skeletal muscle in 18 malignant hyperthermia susceptible individuals. Neuromuscul Disord 18(6):471–474

    Article  PubMed  Google Scholar 

  35. Hirabayashi Y, Kanamori A, Nomura KH, Nomura K (2004) The acetyl-CoA transporter family SLC33. Pflugers Arch 447(5):760–762

    Article  PubMed  CAS  Google Scholar 

  36. Massey LK, Mah AL, Ford DL, Miller J, Liang J, Doong H, Monteiro MJ (2004) Overexpression of ubiquilin decreases ubiquitination and degradation of presenilin proteins. J Alzheimers Dis 6(1):79–92

    PubMed  CAS  Google Scholar 

  37. Thompson O, Kleino I, Crimaldi L, Gimona M, Saksela K, Winder SJ (2008) Dystroglycan, Tks5 and Src mediated assembly of podosomes in myoblasts. PLoS One 3(11):e3638

    Article  PubMed  Google Scholar 

  38. Rimm DL, Koslov ER, Kebriaei P, Cianci CD, Morrow JS (1995) αl(E)-Catenin is an actin-binding and -bundling protein mediating the attachment of F-actin to the membrane adhesion complex. PNAS 92(19):8813–8817

    Article  PubMed  CAS  Google Scholar 

  39. Capkovic KL, Stevenson S, Johnson MC, Thelen JJ, Cornelison DD (2008) Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation. Exp Cell Res 314(7):1553–1565

    Article  PubMed  CAS  Google Scholar 

  40. Ishido M, Uda M, Masuhara M, Kami K (2006) Alterations of M-cadherin, neural cell adhesion molecule and beta-catenin expression in satellite cells during overload-induced skeletal muscle hypertrophy. Acta Physiol (Oxf) 187(3):407–418

    Article  CAS  Google Scholar 

  41. Behrendt N, Jensen ON, Engelholm LH, Mørtz E, Mann M, Danø K (2000) A urokinase receptor-associated protein with specific collagen binding properties. J Biol Chem 275(3):1993–2002

    Article  PubMed  CAS  Google Scholar 

  42. Phinney DG, Gray AJ, Hill K, Pandey A (2005) Murine mesenchymal and embryonic stem cells express a similar Hox gene profile. Biochem Biophys Res Commun 338(4):1759–1765

    Article  PubMed  CAS  Google Scholar 

  43. Muraski JA, Rota M, Misao Y, Fransioli J, Cottage C, Gude N, Esposito G, Delucchi F, Arcarese M, Alvarez R, Siddiqi S, Emmanuel GN, Wu W, Fischer K, Martindale JJ, Glembotski CC, Leri A, Kajstura J, Magnuson N, Berns A, Beretta RM, Houser SR, Schaefer EM, Anversa P, Sussman MA (2007) Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat Med 13(12):1467–1475

    Article  PubMed  CAS  Google Scholar 

  44. Wang Z, Bhattacharya N, Weaver M, Petersen K, Meyer M, Gapter L, Magnuson NS (2001) Pim-1: a serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis. J Vet Sci 2(3):167–179

    PubMed  CAS  Google Scholar 

  45. Lilly M, Sandholm J, Cooper JJ, Koskinen PJ, Kraft A (1999) The PIM-1 serine kinase prolongs survival and inhibits apoptosis-related mitochondrial dysfunction in part through a bcl-2-dependent pathway. Oncogene 18(27):4022–4031

    Article  PubMed  CAS  Google Scholar 

  46. Shay KP, Wang Z, Xing PX, McKenzie IF, Magnuson NS (2005) Pim-1 kinase stability is regulated by heat shock proteins and the ubiquitin-proteasome pathway. Mol Cancer Res 3(3):170–181

    Article  PubMed  Google Scholar 

  47. Agarwal N, Hardt T, Brero A, Nowak D, Rothbauer U, Becker A, Leonhardt H, Cardoso MC (2007) MeCP2 interacts with HP1 and modulates its heterochromatin association during myogenic differentiation. Nucleic Acids Res 35(16):5402–5408

    Article  PubMed  CAS  Google Scholar 

  48. Kalitsis P, Fowler KJ, Griffiths B, Earle E, Chow CW, Jamsen K, Choo KH (2005) Increased chromosome instability but not cancer predisposition in haploinsufficient Bub3 mice. Genes Chromosomes Cancer 44(1):29–36

    Article  PubMed  CAS  Google Scholar 

  49. Pandorf CE, Jiang WH, Qin AX, Bodell PW, Baldwin KM, Haddad F (2009) Calcineurin plays a modulatory role in loading-induced regulation of type I myosin heavy chain gene expression in slow skeletal muscle. Am J Physiol Regul Integr Comp Physiol 297(4):R1037–R1048

    Article  PubMed  CAS  Google Scholar 

  50. Riuzzi F, Sorci G, Donato R (2007) RAGE expression in rhabdomyosarcoma cells results in myogenic differentiation and reduced proliferation, migration, invasiveness, and tumor growth. Am J Pathol 171(3):947–961

    Article  PubMed  CAS  Google Scholar 

  51. Knight GE, Burnstock G (1995) Responses of the aorta of the garter snake (Thamnophis sirtalis parietalis) to purines. Br J Pharmacol 114(1):41–48

    PubMed  CAS  Google Scholar 

  52. Deponti D, François S, Baesso S, Sciorati C, Innocenzi A, Broccoli V, Muscatelli F, Meneveri R, Clementi E, Cossu G, Brunelli S (2007) Necdin mediates skeletal muscle regeneration by promoting myoblast survival and differentiation. J Cell Biol 179(2):305–319

    Article  PubMed  CAS  Google Scholar 

  53. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102(6):777–786

    Article  PubMed  CAS  Google Scholar 

  54. Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, Tajbakhsh S, Mansouri A, Cumano A, Buckingham M (2006) Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 172(1):91–102

    Article  PubMed  CAS  Google Scholar 

  55. Cossu G, Borello U (1999) Wnt signaling and the activation of myogenesis in mammals. EMBO J 18(24):6867–6872

    Article  PubMed  CAS  Google Scholar 

  56. Carnac G, Primig M, Kitzmann M, Chafey P, Tuil D, Lamb N, Fernandez A (1998) RhoA GTPase and serum response factor control selectively the expression of MyoD without affecting Myf5 in mouse myoblasts. Mol Biol Cell 9(7):1891–1902

    PubMed  CAS  Google Scholar 

  57. Guttridge DC, Mayo MW, Madrid LV, Wang CY, Baldwin AS Jr (2000) NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289(5488):2363–2366

    Article  PubMed  CAS  Google Scholar 

  58. Tsivitse S (2010) Notch and Wnt signaling, physiological stimuli and postnatal myogenesis. Int J Biol Sci 6(3):268–281

    Article  PubMed  CAS  Google Scholar 

  59. Brack A, Conboy IM, Conboy MJ, Shen J, Rando TA (2008) A temporal switch from Notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell 2:50–59

    Article  PubMed  CAS  Google Scholar 

  60. Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309(5743):2064–2067

    Article  PubMed  CAS  Google Scholar 

  61. Hlaing M, Spitz P, Padmanabhan K, Cabezas B, Barker CS, Bernstein HS (2004) E2F-1 regulates the expression of a subset of target genes during skeletal myoblast hypertrophy. J Biol Chem 279(42):43625–43633

    Article  PubMed  CAS  Google Scholar 

  62. Liu J, Burkin DJ, Kaufman SJ (2008) Increasing alpha 7 beta 1-integrin promotes muscle cell proliferation, adhesion, and resistance to apoptosis without changing gene expression. Am J Physiol Cell Physiol 294(2):C627–C640

    Article  PubMed  CAS  Google Scholar 

  63. Allikian MJ, Hack AA, Mewborn S, Mayer U, McNally EM (2004) Genetic compensation for sarcoglycan loss by integrin alpha7beta1 in muscle. J Cell Sci 117(Pt 17):3821–3830

    Article  PubMed  CAS  Google Scholar 

  64. Jethanandani P, Kramer RH (2005) Alpha7 integrin expression is negatively regulated by deltaEF1 during skeletal myogenesis. J Biol Chem 280(43):36037–36046

    Article  PubMed  CAS  Google Scholar 

  65. de León MB, Montañez C, Gómez P, Morales-Lázaro SL, Tapia-Ramírez V, Valadez-Graham V, Recillas-Targa F, Yaffe D, Nudel U, Cisneros B (2005) Dystrophin Dp71 expression is down-regulated during myogenesis: role of Sp1 and Sp3 on the Dp71 promoter activity. J Biol Chem 280(7):5290–5299

    Article  PubMed  Google Scholar 

  66. Pietrangelo T, Puglielli C, Mancinelli R, Beccafico S, Fanò G, Fulle S (2009) Molecular basis of the myogenic profile of aged human skeletal muscle satellite cells during differentiation. Exp Gerontol 44(8):523–531

    Article  PubMed  CAS  Google Scholar 

  67. Moore SE, Thompson J, Kirkness V, Dickson JG, Walsh FS (1987) Skeletal muscle neural cell adhesion molecule (N-CAM): changes in protein and mRNA species during myogenesis of muscle cell lines. J Cell Biol 105(3):1377–1386

    Article  PubMed  CAS  Google Scholar 

  68. Kubo Y (1991) Comparison of initial stages of muscle differentiation in rat and mouse myoblastic and mouse mesodermal stem cell lines. J Physiol 442:743–759

    PubMed  CAS  Google Scholar 

  69. Kowenz-Leutz E, Leutz A (1999) A C/EBPβ isoform recruits the SWI/SNF complex to activate myeloid genes. Mol Cell 4(5):735–743

    Article  PubMed  CAS  Google Scholar 

  70. Wrighton KH, Liang M, Bryan B, Luo K, Liu M, Feng XH, Lin X (2007) Transforming growth factor-beta-independent regulation of myogenesis by SnoN sumoylation. J Biol Chem 282(9):6517–6524

    Article  PubMed  CAS  Google Scholar 

  71. Dalla Libera L, Ravara B, Gobbo V, Tarricone E, Vitadello M, Biolo G, Vescovo G, Gorza L (2009) A transient antioxidant stress response accompanies the onset of disuse atrophy in human skeletal muscle. J Appl Physiol 107(2):549–557

    Article  PubMed  CAS  Google Scholar 

  72. Sacht G, Brigelius-Flohe R, Kiess M, Sztajer H, Flohe L (1999) ATPsensitive association of mortalin with the IL-1 receptor type I. Biofactors 9:49–60

    Article  PubMed  CAS  Google Scholar 

  73. Vary TC, Owens EL, Beers JK, Verner K, Cooney RN (1996) Sepsis inhibits synthesis of myofibrillar and sarcoplasmic proteins: modulation by interleukin-1 receptor antagonist. Shock 6(1):13–18

    Article  PubMed  CAS  Google Scholar 

  74. Zhang L, Du J, Hu Z, Han G, Delafontaine P, Garcia G, Mitch WE (2009) IL-6 and serum amyloid A synergy mediates angiotensin II-induced muscle wasting. J Am Soc Nephrol 20(3):604–612

    Article  PubMed  Google Scholar 

  75. Swant JD, Rendon BE, Symons M, Mitchell RA (2005) Rho GTPase-dependent signalling is required for macrophage migration inhibitory factor-mediated expression of cyclin D1. J Biol Chem 280(24):23066–23072

    Article  PubMed  CAS  Google Scholar 

  76. Mancinelli R, Kern H, Fulle S, Carraro U, Zampieri S, La Rovere R, Fanò G and Pietrangelo T (2011) Transcriptional profile of denervated vastus lateralis muscle derived from a patient 8 months after spinal cord injury: a case-report. International Journal of Immunopathology and Pharmacology (in press)

  77. Burnstock G (2004) Introduction: P2 receptors. Curr Top Med Chem 4(8):793–803

    Article  PubMed  CAS  Google Scholar 

  78. Traut TW (1994) Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 140(1):1–22

    Article  PubMed  CAS  Google Scholar 

Download references

Grants

This study was supported by research grants from MIUR (COFIN 2002) and from “G. d'Annunzio” University of Chieti-Pescara, to Stefania Fulle and Tiziana Pietrangelo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Mancinelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mancinelli, R., Pietrangelo, T., Burnstock, G. et al. Transcriptional profile of GTP-mediated differentiation of C2C12 skeletal muscle cells. Purinergic Signalling 8, 207–221 (2012). https://doi.org/10.1007/s11302-011-9266-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-011-9266-3

Keywords

Navigation