Skip to main content
Log in

Foetal ECG and STAN technology—a review

  • Clinical Review
  • Published:
European Clinics in Obstetrics and Gynaecology

Abstract

Waveform analysis of the foetal electrocardiogram (FECG) has been studied from physiological, signal processing and clinical aspects. Two randomised controlled trials (RCT) have been performed during the last 20 years, monitoring high-risk labours with cardiotocography (CTG) only or combining CTG with the ST waveform analysis of the FECG. A significant decrease in neonates born with metabolic acidosis in cord artery blood was observed, along with a decrease of operative deliveries for foetal distress. Blinded assessment of neonatal outcome in the latest RCT revealed an improvement of the Apgar score and the need for intensive care and neonatal encephalopathy when monitoring with CTG in combination with FECG. Also, the interobserver agreement for ST analysis was higher than for CTG alone. The system ability of the STAN technology, including an educational model, was studied in several European University clinics as an EU-supported project. During the last 6 months, the project confirmed the incidence of metabolic acidosis (0.64%) and moderate/severe encephalopathy in the earlier RCT on using ST information in addition to CTG. The available evidence suggests that the expected outcome could be achieved in most clinics, with a special focus on systematic teaching and training. Compared to ST analysis, foetal blood sampling (FBS) for pH analysis is technically complicated and, because it only presents momentary information, needs to be repeated to give adequate information. The STAN method provides continuous on-line information. ST waveform analysis in addition to CTG has the potential to give significant benefits in reducing operative deliveries for foetal distress and reducing the incidence of metabolic acidosis. However, this will depend on the appropriate education and use of STAN according to the guidelines provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thacker SB, Stroup D, Chang M (2001) Continuous electronic heart rate monitoring for fetal assessment during labor. The Cochrane Database of Systematic Reviews, issue 2, article no CD000063

  2. MacDonald D, Grant A, Sheridan-Pereira M, Boylan P, Chalmers I (1985) The Dublin randomized controlled trial of intrapartum fetal heart rate monitoring. Am J Obstet Gynecol 152(5):524–539

    CAS  PubMed  Google Scholar 

  3. Grant A, O’Brien N, Joy MT, Hennessy E, MacDonald D (1989) Cerebral palsy among children born during the Dublin randomised trial of intrapartum monitoring. Lancet 2(8674):1233–1236

    Article  CAS  PubMed  Google Scholar 

  4. Westgate J (1993) An evaluation of electronic fetal monitoring with clinical validation of ST waveform analysis during labour. PhD thesis, University of Plymouth, UK

  5. Boehm FH (1999) Intrapartum fetal heart rate monitoring. Obstet Gynecol Clin North Am 26(4):623–639

    CAS  PubMed  Google Scholar 

  6. Confidential enquiry into stillbirths and deaths in infancy (CESDI) (1995) Highlights of the 4th annual report. Pract Midwife 1

  7. Hon EH, Quilligan EJ (1967) The classification of fetal heart rate. II: a revised working classification. Conn Med 31(11):779–784

    CAS  PubMed  Google Scholar 

  8. Nielsen PV, Stigsby B, Nickelsen C, Nim J (1987) Intra- and inter-observer variability in the assessment of intrapartum cardiotocograms. Acta Obstet Gynecol Scand 66(5):421–424

    Google Scholar 

  9. Donker DK, Van Geijn HP, Hasman A (1993) Interobserver variation in the assessment of fetal heart rate recordings. Eur J Obstet Gynecol Reprod Biol 52(1):21–28

    Article  CAS  PubMed  Google Scholar 

  10. Bernardes J, Costa-Pereira A, Ayres-de-Campos D, van Geijn HP, Pereira-Leite L (1997) Evaluation of interobserver agreement of cardiotocograms. Int J Gynaecol Obstet 57(1):33–37

    Article  CAS  PubMed  Google Scholar 

  11. Blix E, Sviggum O, Koss KS, Oian P (2003) Inter-observer variation in assessment of 845 labour admission tests: comparison between midwives and obstetricians in the clinical setting and two experts. BJOG 110(1):1–5

    Google Scholar 

  12. Blix E, Oian P (2001) Labor admission test: an assessment of the test’s value as screening for fetal distress in labor. Acta Obstet Gynecol Scand 80(8):738–743

    Article  CAS  PubMed  Google Scholar 

  13. Keith RD, Beckley S, Garibaldi JM, Westgate JA, Ifeachor EC, Greene KR (1995) A multicentre comparative study of 17 experts and an intelligent computer system for managing labour using the cardiotocogram. Br J Obstet Gynaecol 102(9):688–700

    CAS  PubMed  Google Scholar 

  14. MacLennan A (1999) A template for defining a causal relation between acute intrapartum events and cerebral palsy: international consensus statement. BMJ 319(7216):1054–1059

    CAS  PubMed  Google Scholar 

  15. Murphy KW, Johnson P, Moorcraft J, Pattinson R, Russell V, Turnbull A (1990) Birth asphyxia and the intrapartum cardiotocograph. Br J Obstet Gynaecol 97(6):470–479

    CAS  PubMed  Google Scholar 

  16. Nelson KB, Dambrosia JM, Ting TY, Grether JK (1996) Uncertain value of electronic fetal monitoring in predicting cerebral palsy. N Engl J Med 334(10):613–618

    Article  CAS  PubMed  Google Scholar 

  17. Impey L, Reynolds M, MacQuillan K, Gates S, Murphy J, Sheil O (2003) Admission cardiotocography: a randomised controlled trial. Lancet 361(9356):465–470

    Article  PubMed  Google Scholar 

  18. Westgate J, Harris M, Curnow JS, Greene KR (1993) Plymouth randomized trial of cardiotocogram only versus ST waveform plus cardiotocogram for intrapartum monitoring in 2400 cases. Am J Obstet Gynecol 169(5):1151–1160

    CAS  PubMed  Google Scholar 

  19. Amer-Wahlin I, Hellsten C, Noren H, Hagberg H, Herbst A, Kjellmer I, Lilja H, Lindoff C, Mansson M, Martensson L, Olofsson P, Sundstrom A, Marsal K (2001) Cardiotocography only versus cardiotocography plus ST analysis of fetal electrocardiogram for intrapartum fetal monitoring: a Swedish randomised controlled trial. Lancet 358(9281):534–538

    Article  CAS  PubMed  Google Scholar 

  20. Symonds EM, Sahota D, Chang A (2001) Fetal electrocardiography. Imperial College Press, London

  21. Widmark C, Lindecrantz K, Murray H, Rosen KG (1992) Changes in the PR, RR intervals and ST waveform of the fetal lamb electrocardiogram with acute hypoxemia. J Dev Physiol 18(3):99–103

    CAS  PubMed  Google Scholar 

  22. Luzietti R, Erkkola R, Hasbargen U, Mattson LA, Thoulon JM, Rosen KG (1997) European community multicentre trial “Fetal ECG analysis during labour”: the PR interval. J Perinat Med 25(1):27–34

    CAS  PubMed  Google Scholar 

  23. Westgate JA, Gunn AJ, Bennet L, Gunning MI, de Haan HH, Gluckman PD (1998) Do fetal electrocardiogram PR-RR changes reflect progressive asphyxia after repeated umbilical cord occlusion in fetal sheep? Pediatr Res 44(3):297–303

    CAS  PubMed  Google Scholar 

  24. Fenn WO (1939) The deposition of potassium and phosphate with glycogen in rat livers. J Biol Chem 128:297–308

    CAS  Google Scholar 

  25. Hokegard KH, Eriksson BO, Kjellmer I, Magno R, Rosen KG (1981) Myocardial metabolism in relation to electrocardiographic changes and cardiac function during graded hypoxia in the fetal lamb. Acta Physiol Scand 113(1):1–7

    CAS  PubMed  Google Scholar 

  26. Wohlfart B (1987) A simple model for demonstration of STT-changes in ECG. Eur Heart J 8(4):409–416

    Google Scholar 

  27. Sundstrom A-K, Rosen D, Rosen KG (2000) Fetal surveillance. Neoventa Medical, Gothenburg, Sweden

  28. Rosen KG, Kjellmer I (1975) Changes in the fetal heart rate and ECG during hypoxia. Acta Physiol Scand 93(1):59–66

    CAS  PubMed  Google Scholar 

  29. Dawes GS, Mott JC, Shelley HJ (1959) The importance of cardiac glycogen for the maintenance of life in foetal lambs and newborn animals during anoxia. J Physiol 146(3):516–538

    CAS  PubMed  Google Scholar 

  30. Rosen KG, Isaksson O (1976) Alterations in fetal heart rate and ECG correlated to glycogen, creatine phosphate and ATP levels during graded hypoxia. Biol Neonate 30:17–24

    CAS  Google Scholar 

  31. Greene KR, Dawes GS, Lilja H, Rosen KG (1982) Changes in the ST waveform of the fetal lamb electrocardiogram with hypoxemia. Am J Obstet Gynecol 144(8):950–958

    CAS  PubMed  Google Scholar 

  32. Stern L, Lind J, Kaplan B (1961) Direct human fetal electrocardiography (with studies of the effect of adrenaline, atropine, clamping of the umbilical cord and placenta separation of the fetal ECG). Biol Neonate 3:49

    CAS  Google Scholar 

  33. Lagercrantz H, Bistoletti P (1977) Catecholamine release in the newborn infant at birth. Pediatr Res 11(8):889–893

    CAS  PubMed  Google Scholar 

  34. Hokegard KH, Karlsson K, Kjellmer I, Rosen KG (1979) ECG-changes in the fetal lamb during asphyxia in relation to beta-adrenoceptor stimulation and blockade. Acta Physiol Scand 105(2):195–203

    CAS  PubMed  Google Scholar 

  35. Westgate JA, Bennet L, Brabyn C, Williams CE, Gunn AJ (2001) ST waveform changes during repeated umbilical cord occlusions in near-term fetal sheep. Am J Obstet Gynecol 184(4):743–751

    Article  CAS  PubMed  Google Scholar 

  36. Widmark C (1991) Fetal electrocardiogram relationships to oxygen lack, maturation and growth retardation. An experimental study. Dept of Physiology, University of Gothenburg, Sweden

  37. Rosen KG (2001) Intrapartum fetal monitoring and fetal ECG–time for a change. Arch Perinat Med 7:7–12

    Google Scholar 

  38. Braunwald E, Maroko PR (1976) ST-segment mapping. Realistic and unrealistic expectations. Circulation 54(4):529–532

    CAS  PubMed  Google Scholar 

  39. Gennser G, Nilsson E (1968) The relation between the action potential and the active state in human fetal myocardium and its dependence on muscle length and contraction frequency. Acta Physiol Scand 73(1):42–53

    CAS  PubMed  Google Scholar 

  40. Gelli MG, Gyulai F (1969) Effect of glucose infusion in the mother before delivery on the ECG of rabbit foetuses under anoxia. Acta Obstet Gynecol Scand 48(1):56–63

    CAS  PubMed  Google Scholar 

  41. Pardi G, Uderzo A, Tucci E, Arata GD (1972) Effect of hypoxia on the electrocardiogram and other cardiovascular parameters of the mature sheep fetus. Preliminary results. Minerva Ginecol 24(10):541–543

    CAS  PubMed  Google Scholar 

  42. Myers RE (1972) Two patterns of perinatal brain damage and their conditions of occurrence. Am J Obstet Gynecol 112(2):246–276

    CAS  PubMed  Google Scholar 

  43. Yeh MN, Morishima HO, Niemann WH, James LS (1975) Myocardial conduction defects in association with compression of the umbilical cord. Experimental observations on fetal baboons. Am J Obstet Gynecol 121(7):951–957

    CAS  PubMed  Google Scholar 

  44. Lilja H, Greene KR, Karlsson K, Rosen KG (1985) ST waveform changes of the fetal electrocardiogram during labour—a clinical study. Br J Obstet Gynaecol 92(6):611–617

    CAS  PubMed  Google Scholar 

  45. Rosen KG, Hrbek A, Karlsson K, Kjellmer I (1986) Fetal cerebral, cardiovascular and metabolic reactions to intermittent occlusion of ovine maternal placental blood flow. Acta Physiol Scand 126(2):209–216

    CAS  PubMed  Google Scholar 

  46. Dagbjartsson A, Herbertsson G, Stefansson TS, Kjeld M, Lagercrantz H, Rosen KG (1989) Beta-adrenoceptor agonists and hypoxia in sheep fetuses. Acta Physiol Scand 137(2):291–299

    CAS  PubMed  Google Scholar 

  47. Watanabe T, Okamura K, Tanigawara S, Shintaku Y, Akagi K, Endo H, Yajima A (1992) Change in electrocardiogram T-wave amplitude during umbilical cord compression is predictive of fetal condition in sheep. Am J Obstet Gynecol 166(1 Pt 1):246–255

    CAS  PubMed  Google Scholar 

  48. Rosen KG, Lilja H, Hokegard KH, Kjellmer I (1985) The relationship between cerebral cardio-vascular and metabolic functions during labour in the lamb fetus. In: The physiol development of fetus and newborn, Academic Press, London, pp 461–465

  49. Widmark C, Jansson T, Lindecrantz K, Rosen KG (1991) ECG waveform, short term heart rate variability and plasma catecholamine concentrations in response to hypoxia in intrauterine growth retarded guinea-pig fetuses. J Dev Physiol 15(3):161–168

    CAS  PubMed  Google Scholar 

  50. Cremer M (1906) Uber die direkte Ableitung der Aktonsstrøme des mensclichen Herzen vom Oesophagus, und uber das Elektrokardiogramm des Føtus. Munch med Wschr 53:811

    Google Scholar 

  51. Einthoven W (1902) Galvanometric registration of the human electrocardiogram. Eduard Ijdo, Leiden, The Netherlands, pp 101–106

    Google Scholar 

  52. Hon EH (1963) Instrumentation of fetal heart rate and fetal electrocardiography. II: a vaginal electrode. Am J Obstet Gynecol 86:772–784

    CAS  PubMed  Google Scholar 

  53. Hon EH, Lee ST (1965) The fetal electrocardiogram. 3: display techniques. Am J Obstet Gynecol 91:56–60

    CAS  PubMed  Google Scholar 

  54. Larks SD, Longo LD (1962) Electrocardiographic studies of the fetal heart during delivery. Obstet Gynecol 19:740–747

    CAS  PubMed  Google Scholar 

  55. Larks SSD, Larks GG (1966) Comparative aspects of the fetal and newborn electrocardiograms. Evidence for the validity of the method for calculation of the electrical axis of the fetal heart. Am J Obstet Gynecol 96(4):553–555

    CAS  PubMed  Google Scholar 

  56. Pardi G, Tucci E, Uderzo A, Zanini D (1974) Fetal electrocardiogram changes in relation to fetal heart rate patterns during labor. Am J Obstet Gynecol 118(2):243–250

    CAS  PubMed  Google Scholar 

  57. Marvell CJ, Kirk DL, Jenkins HM, Symonds EM (1980) The normal condition of the fetal electrocardiogram during labour. Br J Obstet Gynaecol 87(9):786–796

    CAS  PubMed  Google Scholar 

  58. Jenkins HM, Symonds EM, Kirk DL, Smith PR (1986) Can fetal electrocardiography improve the prediction of intrapartum fetal acidosis?. Br J Obstet Gynaecol 93(1):6–12

    CAS  PubMed  Google Scholar 

  59. Rosen KG, Lindecrantz K (1980) STAN—the Gothenburg model for fetal surveillance during labour by ST analysis of the fetal electrocardiogram. Clin Phys Physiol Meas 10(Suppl B):51–56

    Article  Google Scholar 

  60. Lindecrantz KG, Lilja H, Widmark C, Rosen KG (1988) Fetal ECG during labour: a suggested standard. J Biomed Eng 10(4):351–353

    CAS  PubMed  Google Scholar 

  61. Newbold S, Wheeler T, Clewlow F (1991) Comparison of the T/QRS ratio of the fetal electrocardiogram and the fetal heart rate during labour and the relation of these variables to condition at delivery. Br J Obstet Gynaecol 98(2):173–178

    CAS  PubMed  Google Scholar 

  62. Lilja H, Arulkumaran S, Lindecrantz K, Ratnam SS, Rosen KG (1988) Fetal ECG during labour: a presentation of a microprocessor system. J Biomed Eng 10(4):348–350

    CAS  PubMed  Google Scholar 

  63. Arulkumaran S, Lilja H, Lindecrantz K, Ratnam SS, Thavarasah AS, Rosen KG (1990) Fetal ECG waveform analysis should improve fetal surveillance in labour. J Perinat Med 18(1):13–22

    CAS  PubMed  Google Scholar 

  64. Rosen KG (1991) Quantification of intrapartum asphyxia. J Perinat Med 19(Suppl 1):337–341

    PubMed  Google Scholar 

  65. Johanson RB, Rice C, Shokr A, Doyle M, Chenoy R, O’Brien PM (1992) ST-waveform analysis of the fetal electrocardiogram could reduce fetal blood sampling. Br J Obstet Gynaecol 99(2):167–168

    CAS  PubMed  Google Scholar 

  66. Murphy KW, Russell V, Johnson P, Valente J (1992) Clinical assessment of fetal electrocardiogram monitoring in labour. Br J Obstet Gynaecol 99(1):32–37

    CAS  PubMed  Google Scholar 

  67. Luzietti R, Erkkola R, Hasbargen U, Mattsson LA, Thoulon JM, Rosen KG (1999) European community multicentre trial “Fetal ECG analysis during labour”: ST plus CTG analysis. J Perinat Med 27(6):431–440

    Article  CAS  PubMed  Google Scholar 

  68. Amer-Wahlin I, Bordahl P, Eikeland T, Hellsten C, Noren H, Sornes T, Rosen KG (2002) ST analysis of the fetal electrocardiogram during labor: Nordic observational multicenter study. J Matern Fetal Neonatal Med 12(4):260–266

    CAS  PubMed  Google Scholar 

  69. Amer-Wahlin I, Kallen K, Herbst A, Rydhstroem H, Sundstrom A-K, Marsal K (2005) Implementation of new medical technique: experience from the Swedish randomised controlled trial on fetal ECG during labour. J Matern Fetal Neonatal Med (in press)

  70. Noren H, Amer-Wahlin I, Hagberg H, Herbst A, Kjellmer I, Marsal K, Olofsson P, Rosen KG (2003) Fetal electrocardiography in labor and neonatal outcome: data from the Swedish randomized controlled trial on intrapartum fetal monitoring. Am J Obstet Gynecol 188(1):183–192

    Article  PubMed  Google Scholar 

  71. Neilson JP (2003) Fetal electrocardiogram (ECG) for fetal monitoring during labour. The Cochrane Database of Systematic Reviews, issue 2, article no CD000116

  72. Hagberg H, Amer-Wahlin I, Herbst A, Lilja H, Noren H, Olofsson P, Marsal K (2004) A new monitoring method for safer child delivery. Lower number of metabolic acidosis cases with fetal ECG and cardiotocography. Lakartidningen 101(48):3875–3876

    PubMed  Google Scholar 

  73. Rosen KG, Amer-Wahlin I, Luzietti R, Noren H (2004) Fetal ECG waveform analysis. Best Pract Res Clin Obstet Gynaecol 18(3):485–514

    Article  PubMed  Google Scholar 

  74. Olofsson P (2003) Current status of intrapartum fetal monitoring: cardiotocography versus cardiotocography + ST analysis of the fetal ECG. Eur J Obstet Gynecol Reprod Biol 110(Suppl 1):S113–S118

    Article  PubMed  Google Scholar 

  75. Rooth G, Huch R (eds) (1987) FIGO News: guidelines for the use of fetal monitoring, vol. 25, pp159–167

  76. Dervaitis KL, Poole M, Schmidt G, Penava D, Natale R, Gagnon R (2004) ST segment analysis of the fetal electrocardiogram plus electronic fetal heart rate monitoring in labor and its relationship to umbilical cord arterial blood gases. Am J Obstet Gynecol 191(3):879–884

    Article  PubMed  Google Scholar 

  77. Kwee A, van der Hoorn-van den Beld CW, Veerman J, Dekkers AH, Visser GH (2004) STAN S21 fetal heart monitor for fetal surveillance during labor: an observational study in 637 patients. J Matern Fetal Neonatal Med 15(6):400–407

    Article  CAS  PubMed  Google Scholar 

  78. Siggaard-Andersen O (1971) An acid-base chart for arterial blood with normal and pathophysiological reference areas. Scand J Clin Lab Invest 27(3):239–245

    CAS  PubMed  Google Scholar 

  79. Rosen KG, Murphy KW (1991) How to assess fetal metabolic acidosis from cord samples. J Perinat Med 19(3):221–226

    CAS  PubMed  Google Scholar 

  80. Westgate J, Greene K (1994) How well is fetal blood sampling used in clinical practice? Br J Obstet Gynaecol 101(3):250–251

    CAS  PubMed  Google Scholar 

  81. Greene KR (1996) Scalp blood gas analysis. Obstet Gynecol Clin North Am 26(4):641–656

    Google Scholar 

  82. Luttkus AK, Noren H, Stupin JH, Blad S, Arulkumaran S, Erkkola R, Hagberg H, Lenstrup C, Visser GH, Tamazian O, Yli B, Rosen KG, Dudenhausen JW (2004) Fetal scalp pH and ST analysis of the fetal ECG as an adjunct to CTG. A multi-center, observational study. J Perinat Med 32(6):486–494

    Article  PubMed  Google Scholar 

  83. Ross MG, Devoe LD, Rosen KG (2004) ST-segment analysis of the fetal electrocardiogram improves fetal heart rate tracing interpretation and clinical decision making. J Matern Fetal Neonatal Med 15(3):181–185

    Article  CAS  PubMed  Google Scholar 

  84. Amer-Wahlin I, Ingemarsson I, Marsal K, Herbst A (2005) Fetal heart rate patterns and ECG ST segment changes preceding metabolic acidaemia at birth. BJOG 112(2):160–165

    PubMed  Google Scholar 

  85. Fetal ECG waveform analysis—current developments (2004) In: Proceedings of the XIX European congress of perinatal medicine, Athens, Greece, October 2004

  86. Spencer JA, Badawi N, Burton P, Keogh J, Pemberton P, Stanley F (1997) The intrapartum CTG prior to neonatal encephalopathy at term: a case-control study. Br J Obstet Gynaecol 104(1):25–28

    CAS  PubMed  Google Scholar 

  87. Rosser J (1998) Confidential enquiry into stillbirths and deaths in infancy. Highlights of the 5th annual report (I). Pract Midwife 1(10):32–33

    CAS  Google Scholar 

  88. Niswander K, Henson G, Elbourne D, Chalmers I, Redman C, Macfarlane A, Tizard P (1984) Adverse outcome of pregnancy and the quality of obstetric care. Lancet 2(8407):827–831

    Article  CAS  PubMed  Google Scholar 

  89. Gaffney G, Sellers S, Flavell V, Squier M, Johnson A (1994) Case-control study of intrapartum care, cerebral palsy, and perinatal death. BMJ 308(6931):743–750

    CAS  PubMed  Google Scholar 

  90. Gunn AJ, Gunn TR (1997) Changes in risk factors for hypoxic-ischaemic seizures in term infants. Aust N Z J Obstet Gynaecol 37(1):36–39

    CAS  PubMed  Google Scholar 

  91. Grant A, Chalmers I, Enkin M, Keirese MJNC (1989) Monitoring the fetus during labor. In: Effective care in pregnancy and childbirth, effective care in pregnancy and childbirth. Oxford University Press, Oxford, pp 846–882

  92. Westgate J, Greene K (1994) The use of the fetal electrocardiogram in labour. Br J Obstet Gynaecol 101(12):9–17

    CAS  PubMed  Google Scholar 

  93. Amer-Wahlin I (2003) Fetal ECG waveform analysis for intrapartum monitoring. PhD dissertation, Lund University, Sweden

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Amer-Wåhlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amer-Wåhlin, I., Yli, B. & Arulkumaran, S. Foetal ECG and STAN technology—a review. Eur Clinics Obstet Gynaecol 1, 61–73 (2005). https://doi.org/10.1007/s11296-005-0017-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11296-005-0017-2

Keywords

Navigation