Skip to main content

Advertisement

Log in

Is the genetic diversity of small scattered forest tree populations at the southern limits of their range more prone to stochastic events? A wild cherry case study by microsatellite-based markers

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Wild cherry (Prunus avium L.) is a widespread, partially asexual, noble hardwood European species characterized by a scattered distribution, small population sizes, and human exploitation for its valuable wood. These characteristics, especially at the southern limits of the species natural distribution where additional varying stresses may occur, render P. avium populations prone to potential stochastic, genetic, and demographic events. In this study, we used dominant inter simple sequence repeat (ISSR) and codominant simple sequence repeat (SSR) markers to infer the genetic structure of P. avium. Five populations from northern Greece were evaluated based on 46 ISSR and 11 SSR loci. Populations presented a relatively high level of genetic variation, with a mean genetic diversity of H e = 0.166 and H e = 0.740 regarding ISSR and SSR analysis, respectively. We observed moderate population differentiation for ISSR (G ST = 0.113) and SSR (F ST = 0.097) markers. AMOVA also detected significant differentiation among populations for ISSRs (Φ ST = 0.338) and SRRs (Φ ST = 0.162). According to linkage disequilibrium analysis, estimates of effective population size were generally sufficient for maintaining extant genetic variability and evolutionary potential. A possible bottleneck was detected for only one population. In general, it appears that despite the particular characteristics of the P. avium populations studied, genetic stochasticity events were not apparent. The studied populations, located at the rear edge of the species European distribution, reveal a wealth of genetic variation that is very valuable for the genetic conservation of local adaptive gene complexes, especially under contemporary climatic change scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arana MV, Gallo LA, Vendramin GG, Pastorino MJ, Sebastiani F, Marchelli P (2010) High genetic variation in marginal fragmented populations at extreme climatic conditions of the Patagonian Cypress Austrocedrus chilensis. Mol Phyl Evol 54:941–949

    Article  CAS  Google Scholar 

  • Aravanopoulos AF, Avramidou E, Ganopoulos I (2008) Genetics of wild cherry (Prunus avium L.) in Greece. Growing valuable broadleaved tree species, 6–8 October, Freiburg, Germany

  • Avramidou E, Ganopoulos IV, Aravanopoulos FA (2010) DNA fingerprinting of elite Greek wild cherry (Prunus avium L.) genotypes using microsatellite markers. Forestry 83:527–533

    Article  Google Scholar 

  • Bartley D, Bagley M, Gall G, Bentley B (1992) Use of linkage disequilibrium data to estimate effective size of hatchery and natural fish populations. Conserv Biol 6:365–375

    Article  Google Scholar 

  • Beaver JA, Iezzoni AF, Ramm CW (1995) Isozyme diversity in sour, sweet and ground cherry. Theor Appl Genet 90:847–852

    Article  CAS  Google Scholar 

  • Behre K (1978) Formenkreise von Prunus domestica L. von der Wikingerzeit bis in die fru¨ he Neuzeit nach Fruchtsteinen aus Haithabu und Alt-Schleswig. Berichte der Deutschen Botanischen Gesellschaft 91:161–179

    Google Scholar 

  • Belkhir K (1999) GENETIX (v4.04): a Windows program for population genetic analysis. Laboratorie Genome, Populations Interactions, UPR 5000 du CNRS, Universite Montpellier II, Montpellier

    Google Scholar 

  • Belletti P, Monteleone I, Ferrazzini D (2008) A population genetic study in a scattered forest species, wild service tree [Sorbus torminalis (L.) Crantz], using RAPD markers. Eur J Forest Res 127:103–114

    Article  CAS  Google Scholar 

  • Boshier D, Amaral W (2004) Threats to forest ecosystems and challenges for the conservation and sustainable use of forest genetic resources. In: Vinceti B, Amaral W, Meilleur B (eds) Challenges in managing forest genetic resources for livelihoods. IPGRI, Rome, pp 7–22

    Google Scholar 

  • Boys J, Cherry M, Dayanandan S (2005) Microsatellite analysis reveals genetically distinct populations of red pine (Pinus resinosa, Pinaceae). Am J Bot 92:833–841

    Article  PubMed  CAS  Google Scholar 

  • Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  PubMed  CAS  Google Scholar 

  • Clarke JB, Tobutt KR (2003) Development and characterization of polymorphic microsatellites from Prunus avium ‘Napoleon’. Molecular Ecology Notes 3:578–580

    Article  CAS  Google Scholar 

  • Cornuet J, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Crane M, Brown A (1937) Incompatibility and sterility in the sweet cherry, Prunus avium L. J Pomol Hort Sci 15:85–116

    Google Scholar 

  • Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509

    Article  PubMed  CAS  Google Scholar 

  • Dawson IK, Powell W (1999) Genetic variation in the Afromontane tree Prunus africana, an endangered medicinal species. Mol Ecol 8:151–156

    Article  Google Scholar 

  • Degen B, Blanc L, Caron H, Maggia L, Kremer A, Gourlet-Fleury S (2006) Impact of selective logging on genetic composition and demographic structure of four tropical tree species. Biol Conserv 131:386–401

    Article  Google Scholar 

  • Demesure B, Guerrouι BL, Lucchi G, Prat D, Petit R-J (2000) Genetic variability of a scattered temperate forest tree: Sorbus torminalis L. (Crantz). Ann For Sci 57:63–71

    Article  Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170

    Article  PubMed  Google Scholar 

  • Downey SL, Iezzoni AF (2000) Polymorphic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach, and sour cherry. J Am Soc Hort Sci 125:76–80

    CAS  Google Scholar 

  • Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small amount of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Ducci F, Santi F (1997) The distribution of clones in managed and unmanaged populations of wild cherry (Prunus avium). Can J For Res 27:1998–2004

    Article  Google Scholar 

  • Durel CE, Bertin P, Kremer A (1996) Relationship between inbreeding depression and inbreeding coefficient in maritime pine (Pinus pinaster). Theor Appl Genet 92:347–356

    Article  Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  PubMed  CAS  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Faegri K, Iversen J, Kaland PE, Krzywinski K (1989) Textbook of pollen analysis, 4th edn. Wiley, Chichester

    Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Frascaria N, Santi F, Guyon P (1993) Genetic differentiation within and among populations of chestnut (Castanea sativa Mill.) and wild cherry (Prunus avium L.). Heredity 70:634–641

    Article  Google Scholar 

  • Ganopoulos VI, Kazantzis K, Chatzicharisis I, Karayiannis I, Tsaftaris A (2011) Genetic diversity, structure and fruit trait associations in Greek sweet cherry cultivars using microsatellite based (SSR/ISSR) and morpho-physiological markers. Euphytica. doi:10.1007/s10681-011-0416-z

  • Gaudeul M, Till-Bottraud I, Barjon F, Manel S (2004) Genetic diversity and differentiation in Eryngium alpinum L. (Apiaceae): comparison of AFLP and microsatellite markers. Heredity 92:508–518

    Article  PubMed  CAS  Google Scholar 

  • Goodman SJ (1997) RSTCalc: a collection of computer programs for calculating estimates of genetic differentiation from microsatellite data and determining their significance. Mol Ecol 6:881–885

    Article  CAS  Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Guarino C, Santoro S, De Simone L, Cipriani G (2009) Prunus avium: nuclear DNA study in wild populations and sweet cherry cultivars. Genome 52:320–337

    Article  PubMed  CAS  Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Mol Ecol 8:461–467

    Google Scholar 

  • Hamrick J, Godt M (1990) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and germplasm resources. Sinauer, Sunderland, pp 43–63

    Google Scholar 

  • Hamrick J, Godt M, Sherman-Broyles S (1992) Factors influencing levels of genetic diversity in woody plant species. New Forests 6:95–124

    Article  Google Scholar 

  • Hardy OJ, Charbonnel N, Freville H, Heuertz M (2003) Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics 163:1467–1482

    PubMed  CAS  Google Scholar 

  • Hedrick UP (1915) The cherries of New York. J B Lyon, Albany

    Google Scholar 

  • Hedrick P (1999) Highly variable loci and their interpretation in evolution and conservation. Evolution 53:313–318

    Article  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  PubMed  CAS  Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond B Biol Sci 359:183–195

    Article  PubMed  CAS  Google Scholar 

  • Hill WG (1981) Estimation of effective population size from data on linkage disequilibrium. Genet Res 38:209–216

    Article  Google Scholar 

  • Hoffman A, Parsons P (1996) Extreme environmental change and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Hu L-J, Uchiyama K, Saito Y, Ide Y (2010) Contrasting patterns of nuclear microsatellite genetic structure of Fraxinus mandshurica var. japonica between northern and southern populations in Japan. J Biogeogr 37:1131–1143

    Article  Google Scholar 

  • Jordano P, Godoy JA (2000) RAPD variation and population genetic structure in Prunus mahaleb (Rosaceae), an animal-dispersed tree. Mol Ecol 9:1293–1305

    Article  PubMed  CAS  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kalinowski S, Taper M (2006) Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conserv Genet 7:991–995

    Article  CAS  Google Scholar 

  • Kang M, Wang J, Huang H (2008) Demographic bottlenecks and low gene flow in remnant populations of the critically endangered Berchemiella wilsonii var. pubipetiolata (Rhamnaceae) inferred from microsatellite markers. Conserv Genet 9:191–199

    Article  Google Scholar 

  • Kar P, Srivastava P, Awasthi A, Urs S (2008) Genetic variability and association of ISSR markers with some biochemical traits in mulberry (Morus spp.) genetic resources available in India. Tree Genet Genom 4:75–83

    Article  Google Scholar 

  • Karp A, Seberg O, Buiatti M (1996) Molecular Techniques in the Assessment of Botanical Diversity. Ann Bot 78(2):143–149

    Article  CAS  Google Scholar 

  • Kato S, Iwata H, Tsumura Y, Mukai Y (2010) Genetic structure of island populations of Prunus lannesiana var. speciosa revealed by chloroplast DNA, AFLP and nuclear SSR loci analyses. J Plant Res 124:11–23

    Article  PubMed  Google Scholar 

  • Kimura M, Maruyama T (1971) Pattern of neutral polymorphism in a geographically structured population. Genet Res 18:125–131

    Article  PubMed  CAS  Google Scholar 

  • Lesica P, Allendorf FW (1992) Are small populations of plants worth preserving. Conserv Biol 6:135–139

    Article  Google Scholar 

  • Luikart G, Cornuet J (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237

    Article  Google Scholar 

  • Mariette S, Lefranc M, Legrand P, Taneyhill D, Frascaria-Lacoste N, Machon N (1997) Genetic variability in wild cherry populations in France. Effects of colonizing processes. Theor Appl Genet 94:904–908

    Article  Google Scholar 

  • Mariette S, Tavaud M, Arunyawat U, Capdeville G, Millan M, Salin F (2010) Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus. BMC Genet 11:13

    Article  CAS  Google Scholar 

  • Marshall RE (1954) Cherries and cherry products. In: Economic crops, vol 5. Inter-Science, New York

    Google Scholar 

  • Mattioni C, Cherubini M, Micheli E, Villani F, Bucci G (2008) Role of domestication in shaping Castanea sativa genetic variation in Europe. Tree Genet Genom 4:563–574

    Article  Google Scholar 

  • Meyer-Dingel A, Svolba J, Kleinschmit J (1997) Selektierte, mikrovermehrte Vogelkirschen-Klone. AlIg Forstz/Der Wald 52:963–964

    Google Scholar 

  • Michalakis Y, Excoffier L (1996) A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics 142:1061–1064

    PubMed  CAS  Google Scholar 

  • Mohanty A, Martin JP, Aguinagalde I (2001) A population genetic analysis of chloroplast DNA in wild populations of Prunus avium L. in Europe. Heredity 87:421–427

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  • Omondi S, Kireger E, Dangasuk O, Chikamai B, Odee D, Cavers S, Khasa D (2010) Genetic diversity and population structure of Acacia senegal (L) Willd. in Kenya. Trop Plant Biol 3:59–70

    Article  Google Scholar 

  • Ota T (1993) DISPAN: genetic distance and phylogenetic analysis. Pennsylvania State University, University Park

    Google Scholar 

  • Pairon M, Petitpierre B, Campbell M, Guisan A, Broennimann O, Baret PV, Jacquemart A-L, Besnard G (2010) Multiple introductions boosted genetic diversity in the invasive range of black cherry (Prunus serotina; Rosaceae). Ann Bot 105:881–890

    Article  PubMed  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peel D, Ovenden J, Peel S (2004) NEEstimator: software for estimating effective population size, version 1.3

  • Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Muller-Starck GM, Demesure-Musch B, Palme A, Martin JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565

    Article  PubMed  CAS  Google Scholar 

  • Piry S, Luikart G, Cornuet J (1999) Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Queney G, Ferrand N, Weiss S, Mougel F, Monnerot M (2001) Stationary distributions of microsatellite loci between divergent population groups of the European rabbit (Oryctolagus cuniculus). Mol Biol Evol 18:2169–2178

    PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2)—population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rousset F (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62

    Article  Google Scholar 

  • Russell K (2003) EUFORGEN Technical Guidelines for genetic conservation and use for wild cherry (Prunus avium). International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Sagarin RD, Gaines SD (2002) The ‘abundant centre’ distribution: to what extent is it a biogeographical rule? Ecol Lett 5:137–147

    Article  Google Scholar 

  • Sanou H, Lovett PN, Bouvet J-M (2005) Comparison of quantitative and molecular variation in agroforestry populations of the shea tree (Vitellaria paradoxa C.F. Gaertn) in Mali. Mol Ecol 14:2601–2610

    Article  PubMed  CAS  Google Scholar 

  • Santi F (1988) Variabilité génétique intra et interpopulations chez le merisier (Prunus avium L.). Thèse de Doctorat de l’Institut National Agronomique de Paris Grignon

  • Santi F, Lemoine M, Bruant B (1990) Genetic markers for Prunus avium L: inheritance and linkage of isozyme loci. Ann For Sci 47:131–139

    Article  Google Scholar 

  • Schaal BA, Leverich WJ (1996) Molecular variation in isolated plant populations. Plant Species Biol 11:33–40

    Article  Google Scholar 

  • Schlötterer C (2000) Evolutionary dynamics of microsatellite DNA. Chromosoma 109:365–371

    Article  PubMed  Google Scholar 

  • Schueler S, Tusch A, Scholz F (2006) Comparative analysis of the within-population genetic structure in wild cherry (Prunus avium L.) at the self-incompatibility locus and nuclear microsatellites. Mol Ecol 15:3231–3243

    Article  PubMed  CAS  Google Scholar 

  • Slatkin M (1985) Rare alleles as indicators of gene flow. Evolution 39:53–65

    Article  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  PubMed  CAS  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    PubMed  CAS  Google Scholar 

  • Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 101 (3):421–428

    Google Scholar 

  • Spencer CC, Neigel JE, Leberg PL (2000) Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Mol Ecol 9:1517–1528

    Article  PubMed  CAS  Google Scholar 

  • Stoeckel S, Grange J, Fernandez-Manjarres J, Bilger I, Frascaria-Lacoste N, Mariette S (2006) Heterozygote excess in a self-incompatible and partially clonal forest tree species. Mol Ecol 15:2109–2118

    Article  PubMed  CAS  Google Scholar 

  • Tang S, Dai W, Li M, Zhang Y, Geng Y, Wang L, Zhong Y (2008) Genetic diversity of relictual and endangered plant Abies ziyuanensis (Pinaceae) revealed by AFLP and SSR markers. Genetica 133:21–30

    Article  PubMed  CAS  Google Scholar 

  • Tavaud M, Zanetto A, Santi F, Dirlewanger E (2001) Structuration of genetic diversity in cultivated and wild cherry trees using AFLP markers. International Society for Horticultural Science, Leuven

    Google Scholar 

  • Tessier du Cros E, Matyas C, Kriebel H (1999) Contribution of genetics to the sustained management of global forest resources—conclusions and recommendations. In: Matyas C (ed) Forest genetics and sustainability, vol 63. Forestry Sciences, Netherlands, pp 281–287

    Google Scholar 

  • Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520

    PubMed  CAS  Google Scholar 

  • Tsuda Y, Ide Y (2005) Wide-range analysis of genetic structure of Betula maximowicziana, a long-lived pioneer tree species and noble hardwood in the cool temperate zone of Japan. Mol Ecol 14:3929–3941

    Article  PubMed  CAS  Google Scholar 

  • Tsuda Y, Kimura M, Kato S, Katsuki T, Mukai Y, Tsumura Y (2009) Genetic structure of Cerasus jamasakura, a Japanese flowering cherry, revealed by nuclear SSRs: implications for conservation. J Plant Res 122:367–375

    Article  PubMed  CAS  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Vaughan SP, Russell K (2004) Characterization of novel microsatellites and development of multiplex PCR for large-scale population studies in wild cherry, Prunus avium. Mol Ecol Notes 4:429–431

    Article  CAS  Google Scholar 

  • Vaughan SP, Cottrell JE, Moodley DJ, Connolly T, Russell K (2007) Distribution and fine-scale spatial-genetic structure in British wild cherry (Prunus avium L.). Heredity 98:274–283

    Article  PubMed  CAS  Google Scholar 

  • Vitalis R, Couvet D (2001) Estim 1.0: a computer program to infer population parameters from one-and two-locus gene identity probabilities. Mol Ecol Notes 1:354–356

    Article  Google Scholar 

  • Vucetich JA, Waite TA (2003) Spatial patterns of demography and genetic processes across the species’ range: null hypotheses for landscape conservation genetics. Conserv Genet 4:639–645

    Article  Google Scholar 

  • Weir B, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Weiser F (1996) Ergebnisse einer 33-jährigen Einzelbaum-Nachkommenschaftsprüfung nach freiem Abbliihen von Vogelkirsche. Prunus avium L. var. avium. Silvae Genet 45:260–266

    Google Scholar 

  • Widmer A, Lexer C (2001) Glacial refugia: sanctuaries for allelic richness, but not for gene diversity. Trends Ecol Evol 16:267–269

    Article  PubMed  Google Scholar 

  • Yeh F, Boyle T, Rongcai Y, Ye Z, Xian J (1999) Popgene version 1.31. Microsoft Window-based freeware for population genetic analysis. University of Alberta, Edmonton

    Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  PubMed  CAS  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

Continuous support of the Institute of Agrobiotechnology/CERTH from the General Secretariat of Research and Technology of Greece is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Tsaftaris.

Additional information

Communicated by S. Aitken

Ioannis Ganopoulos and Filippos A. Aravanopoulos contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganopoulos, I., Aravanopoulos, F.A., Argiriou, A. et al. Is the genetic diversity of small scattered forest tree populations at the southern limits of their range more prone to stochastic events? A wild cherry case study by microsatellite-based markers. Tree Genetics & Genomes 7, 1299–1313 (2011). https://doi.org/10.1007/s11295-011-0414-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-011-0414-2

Keywords

Navigation