Skip to main content
Log in

New universal mitochondrial PCR markers reveal new information on maternal citrus phylogeny

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The aim of this work was to provide a set of mitochondrial markers to reveal polymorphism and to study the maternal phylogeny in citrus. We first used 44 universal markers previously described in the literature: nine of these markers produced amplification products but only one revealed polymorphism in citrus. We then designed six conserved pairs of primers using the complete mitochondrial DNA sequences of Arabidopsis thaliana and Beta vulgaris to amplify polymorphic intergenic and intronic regions. From these six pairs of primers, three from introns of genes coding for NADH dehydrogenase subunits 2, 5, and 7, revealed polymorphism in citrus. First, we confirmed that citrus have a maternal mitochondrial inheritance in two populations of 250 and 120 individuals. We then conducted a phylogenic study using four polymorphic primers on 77 genotypes representing the diversity of Citrus and two related genera. Seven mitotypes were identified. Six mitotypes (Poncirus, Fortunella, Citrus medica, Citrus micrantha, Citrus reticulata, and Citrus maxima) were congruent with previous taxonomic investigations. The seventh mitotype enabled us to distinguish an acidic mandarin group (‘Cleopatra’, ‘Sunki’ and ‘Shekwasha’) from other mandarins and revealed a maternal relationship with Citrus limonia (‘Rangpur’ lime, ‘Volkamer’ lemon) and Citrus jambhiri (‘Rough’ lemon). This mitotype contained only cultivated species used as rootstocks due to their good tolerances to abiotic stress. Our results also suggest that two species classified by Swingle and Reece, Citrus limon, and Citrus aurantifolia, have multiple maternal cytoplasmic origins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abkenar AA, Isshiki S, Tashiro Y (2004) Phylogenetic relationships in the "true citrus fruit trees" revealed by PCR-RFLP analysis of cpDNA. Sci Hortic 102:233–242

    Article  CAS  Google Scholar 

  • Abkenar A, Isshiki S, Matsumoto R, Tashiro Y (2008) Comparative analysis of organelle DNAs in acid citrus grown in Japan using PCR-RFLP method. Genet Resour Crop Evol 55:487–492

    Article  CAS  Google Scholar 

  • Barkley N, Roose M, Krueger R, Federici C (2006) Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). TAG Theor Appl Genet 112:1519–1531

    Article  CAS  Google Scholar 

  • Barkley N, Krueger R, Federici C, Roose M (2009) What phylogeny and gene genealogy analyses reveal about homoplasy in citrus microsatellite alleles. Plant Syst Evol 282:71–86

    Article  CAS  Google Scholar 

  • Barrett HC, Rhodes AM (1976) A numerical taxonomic study of affinity relationships in cultivated Citrus and its close relatives. Syst Bot 1:105–136

    Article  Google Scholar 

  • Bayer RJ, Mabberley DJ, Morton C, Miller CH, Sharma IK, Pfeil BE, Rich S, Hitchcock R, Sykes S (2009) A molecular phylogeny of the orange subfamily (Rutaceae: Aurantioideae) using nine cpDNA sequences. Am J Bot 96:668–685

    Article  CAS  Google Scholar 

  • Beidler JL, Hilliard PR, Rill LR (1982) Ultrasensitive staining of nucleic acids with silver. Anal Biochem 126:374–380

    Article  CAS  PubMed  Google Scholar 

  • Botstein D, White R, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  Google Scholar 

  • Cheng Y, de Vicente MC, Meng H, Guo W, Tao N, Deng X (2005) A set of primers for analyzing chloroplast DNA diversity in Citrus and related genera. Tree Physiol 25:661–672

    PubMed  Google Scholar 

  • Cho YR, Mower JP, Qiu YL, Palmer JD (2004) Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proc Natl Acad Sci USA 101:17741–17746

    Article  CAS  PubMed  Google Scholar 

  • Corazza-Nunes MJ, Machado MA, Nunes WMC, Cristofani M, Targon MLPN (2002) Assessment of genetic variability in grapefruits (Citrus paradisi Macf.) and pummelos (C. maxima (Burm.) Merr.) using RAPD and SSR markers. Euphytica 126:169–176

    Article  CAS  Google Scholar 

  • Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–131

    Article  CAS  PubMed  Google Scholar 

  • Deng ZN, Gentile A, Nicolosi E, Continella G, Tribulato E (1996) Parentage determination of some citrus hybrids by molecular markers 2. Proceeding International Society of Citriculture, South Africa, pp 849–854

    Google Scholar 

  • Deng ZN, La Malfa S, Xie XM, Xiong XG, Gentile A (2007) Identification and evaluation of chloroplast uni- and trinucleotide sequence repeats in citrus. Sci Hortic 111:186–192

    Article  CAS  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Duminil J, Pemonge MH, Petit RJ (2002) A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA. Mol Ecol Notes 2:428–430

    Article  CAS  Google Scholar 

  • Dumolin-Lapegue S, Pemonge MH, Petit RJ (1997) An enlarged set of consensus primers for the study of organelle DNA in plants. Mol Ecol 6:393–397

    Article  CAS  PubMed  Google Scholar 

  • Engelke T, Tatlioglu T (2004) The fertility restorer genes X and T alter the transcripts of a novel mitochondrial gene implicated in CMS1 in chives (Allium schoenoprasum L.). Mol Genet Genomics 271:150–160

    Article  CAS  PubMed  Google Scholar 

  • Fang DQ, Krueger RR, Roose ML (1998) Phylogenetic relationships among selected Citrus germplasm accessions revealed by inter-simple sequence repeat (ISSR) markers. J Am Soc Hortic Sci 123:612–617

    CAS  Google Scholar 

  • Federici CT, Fang DQ, Scora RW, Roose ML (1998) Phylogenetic relationships within the genus Citrus (Rutaceae) and related genera as revealed by RFLP and RAPD analysis. Theor Appl Genet 96:812–822

    Article  CAS  Google Scholar 

  • Freudenstein JV, Chase MW (2001) Analysis of mitochondrial nad1b-c intron sequences in Orchidaceae: utility and coding of length-change characters. Syst Bot 26:643–657

    Google Scholar 

  • Froelicher Y, Dambier D, Bassene JB, Costantino G, Lotfy S, Didout C, Beaumont V, Brottier P, Risterucci AM, Luro F, Ollitrault P (2008) Characterization of microsatellite markers in mandarin orange (Citrus reticulata Blanco). Mol Ecol Resour 8:119–122

    Article  CAS  Google Scholar 

  • Gmitter FG Jr, Hu X (1990) The possible role of Yunnan, China, in the origin of contemporary Citrus species (Rutaceae). Econ Bot 44:267–277

    Article  Google Scholar 

  • Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481

    Article  CAS  PubMed  Google Scholar 

  • Green RM, Vardi A, Galun E (1986) The plastome of Citrus. Physical map, variation among Citrus cultivars and species and comparison with related genera. Theor Appl Genet 72:170–177

    Article  CAS  Google Scholar 

  • Gulsen O, Roose ML (2001) Lemons: diversity and relationships with selected Citrus genotypes as measured with nuclear genome markers. J Am Soc Hortic Sci 126:309–317

    CAS  Google Scholar 

  • Herrero R, Asins MJ, Pina JA, Carbonell EA, Navarro L (1996) Genetic diversity in the orange subfamily Aurantioideae. II. Genetic relationships among genera and species. Theor Appl Gene 93:1327–1334

    Article  Google Scholar 

  • Hirai M, Kozaki I, Kajiura I (1986) Isozyme analysis and phylogenic relationship of Citrus. Japanese Journal of Breeding 36:377–389

    Google Scholar 

  • Hodgson RW (1967) Horticultural varieties of Citrus. In: Reuther W, Webber HJ, Batchelor LD (eds) The Citrus Industry. University of California, Riverside, pp 431–589

    Google Scholar 

  • Jena S, Kumar K, Nair N (2009) Molecular phylogeny in Indian Citrus L. (Rutaceae) inferred through PCR-RFLP and trnL-trnF sequence data of chloroplast DNA. Sci Hortic 119:403–416

    Article  CAS  Google Scholar 

  • Laroche J, Li P, Maggia L, Bousquet J (1997) Molecular evolution of angiosperm mitochondrial introns and exons. Proc Natl Acad Sci USA 94:5722–5727

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Scaringe WA, Sommer SS (2000) Discrete mobility of single-stranded DNA in non-denaturing gel electrophoresis. Nucl Acids Res 28:940–943

    Article  CAS  PubMed  Google Scholar 

  • Lotfy S, Luro F, Carreel F, Froelicher Y, Rist D, Ollitrault P (2003) Application of cleaved amplified polymorphic sequence method for analysis of cytoplasmic genome among Aurantioideae intergeneric somatic hybrids. J Am Soc Hortic Sci 128:225–230

    CAS  Google Scholar 

  • Luro F, Costantino G, Terol J, Argout X, Allario T, Wincker P, Talon M, Ollitrault P, Morillon R (2008) Transferability of the EST-SSRs developed on Nules clementine (Citrus clementina Hort ex Tan) to other Citrus species and their effectiveness for genetic mapping. BMC Genomics 9:287

    Article  PubMed  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Moreira CD, Gmitter FG Jr, Grosser JW, Huang S, Ortega VM, Chase CD (2002) Inheritance of organelle DNA sequences in a Citrus-Poncirus intergeneric cross. J Hered 93:174–178

    Article  CAS  PubMed  Google Scholar 

  • Muse SV (2000) Examining rates and patterns of nucleotide substitution in plants. Plant Mol Biol 42:25–43

    Article  CAS  PubMed  Google Scholar 

  • Nicolosi E, Deng ZN, Gentile A, La Malfa S, Continella G, Tribulato E (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166

    Article  CAS  Google Scholar 

  • Nicolosi E, Sl M, El-Otmani M, Negbi M, Goldschmidt EE (2005) The search for the authentic citron (Citrus medica L.): historic and genetic analysis. HortScience 40:1963–1968

    Google Scholar 

  • Ollitrault P, Jacquemond C, Dubois C, Luro F (2003) Citrus. In: Hamon P, Seguin M, Perrier X, Glaszmann J (eds) Genetic diversity of cultivated tropical plants. Science Publishers and Cirad, Paris, pp 193–217

    Google Scholar 

  • Palmer JD, Adams KL, Cho Y, Parkinson CL, Qiu YL, Song K (2000) Dynamic evolution of plant mitochondrial genomes: mobile genes and introns, and highly variable mutation rates. Proc Natl Acad Sci 97:6960–6966

    Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software. In: http://darwin.cirad.fr/darwin

  • Pang X-M, Hu C-G, Deng X-X (2007) Phylogenetic relationships within Citrus and its related genera as inferred from AFLP markers. Genet Resour Crop Evol 54:429–436

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sanjur OI, Piperno DR, Andres TC, Wessel-Beaver L (2002) Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: implications for crop plant evolution and areas of origin. Proc Natl Acad Sci USA 99:535–540

    Article  CAS  PubMed  Google Scholar 

  • Scora RW (1975) On the history and origin of citrus. Bull Torrey Bot Club 102:369–375

    Article  Google Scholar 

  • Scora RW (1988) Biochemistry, taxonomy and evolution of modern cultivated citrus. Proc Int Soc Citricult 1:277–289

    Google Scholar 

  • Scora RW, Kumamoto J, Esen A, Stone BC (1976) A phytochemical investigation of Citrus halimii. Biochem Syst Ecol 4:255–258

    Article  CAS  Google Scholar 

  • Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 38:1409–1438

    Google Scholar 

  • Swingle WT, Reece PC (1967) The botany of Citrus and its wild relatives. In: BL D (ed) Reuther W, Webber HJ. The Citrus Industry, University of California, Riverside, USA, pp 190–430

    Google Scholar 

  • Tanaka T (1954) Species problem in Citrus. Japanese Society for the Promotion of Science, Tokyo, pp 1–152

    Google Scholar 

  • Tanaka T (1977) Fundamental discussion of Citrus classification. Stud Citrologia 14:1–6

    Google Scholar 

  • Torres AM, Soost RK, Diedenhofen U (1978) Leaf isozymes as genetic markers in Citrus. Am J Bot 65:869–881

    Article  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Kobayashi S (1996) Polymorphism of chloroplast DNA in Citrus. J Japan Soc Hort Sci 65:291–296

    Article  CAS  Google Scholar 

  • Yamamoto M, Kobayashi S, Nakamura Y, Yamada Y (1993) Phylogenic relationships of citrus revealed by RFLP analysis of mitochondrial and chloroplast DNA. Jap J Breed 43:355–365

    CAS  Google Scholar 

  • Yingzhi L, Yunjiang C, Nengguo T, Xiuxin D (2007) Phylogenetic analysis of mandarin land races, wild mandarins, and related species in China using nuclear LEAFY second intron and plastid trnL-trnF sequence. J Am Soc Hort Sci 132:796–806

    Google Scholar 

Download references

Acknowledgments

We thank the University of Agriculture, Faisalabad (Pakistan) and the University of Cukurova, Adana (Turkey) for providing “Galgal”, “Natsudaidai”, “Rangpur Nepal” and C. micrantha DNA, the “Comité Mixte Inter Universitaire Franco-Marocain” (Programme Volubils, MA/05/137 and MA/08/196) and the “Collectivité Territoriale de Corse” for the grant assigned to Wafa Mouhaya and to Jean-Baptiste Bassene, respectively. This study was funded by the “Collectivité Territoriale de Corse” (CTC), Interreg IIIA program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Froelicher.

Additional information

Communicated by F. Gmitter

Rights and permissions

Reprints and permissions

About this article

Cite this article

Froelicher, Y., Mouhaya, W., Bassene, JB. et al. New universal mitochondrial PCR markers reveal new information on maternal citrus phylogeny. Tree Genetics & Genomes 7, 49–61 (2011). https://doi.org/10.1007/s11295-010-0314-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-010-0314-x

Keywords

Navigation