Skip to main content
Log in

Age trends in genetic parameters for growth and wood density in Eucalyptus globulus

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Genetic parameters for stem diameter and wood density were compared at selection (4–5 years) and harvest (16–17 years) age in an open-pollinated progeny trial of Eucalyptus globulus in Tasmania (Australia). The study examined 514 families collected from 17 subraces of E. globulus. Wood density was assessed on a subsample of trees indirectly using pilodyn penetration at both ages and directly by core basic density at harvest age. Significant additive genetic variance and narrow-sense heritabilities (\( h_{\text{op}}^2 \)) were detected for all traits. Univariate and multivariate estimates of heritabilities were similar for each trait except harvest-age diameter. Comparable univariate estimates of selection- and harvest-age heritabilities for diameter masked changes in genetic architecture that occurred with stand development, whereby the loss of additive genetic variance through size-dependent mortality was countered by the accentuation of additive genetic differences among survivors with age. Regardless, the additive genetic (r a) and subrace (r s) correlations across ages were generally high for diameter (0.95 and 0.61, respectively) and pilodyn penetration (0.77 and 0.96), as were the correlations of harvest-age core basic density with selection- and harvest-age pilodyn (r a −0.83, −0.88; r s −0.96, −0.83). While r s between diameter and pilodyn were close to zero at both ages, there was a significant change in r a from adverse at selection age (0.25) to close to zero (−0.07) at harvest age. We argue that this change in the genetic correlation reflects a decoupling of the genetic association of growth and wood density with age. This result highlights the need to validate the use of selection-age genetic parameters for predicting harvest-age breeding values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Apiolaza LA, Raymond CA, Yeo BJ (2005) Genetic variation of physical and chemical wood properties of Eucalyptus globulus. Silvae Genet 54:160–166

    Google Scholar 

  • APPITA (2002) Methods of test for pulp and paper—basic density of pulpwood. Australian Pulp and Paper Industry Technical Association, Australian/New Zealand Standard 1301.001s:2002, Carlton, Victoria, Australia

  • Atwood RA, White T, Huber D (2002) Genetic parameters and gains for growth and wood properties in Florida source loblolly pine in the southeastern United States. Can J For Res 32:1025–1039

    Article  Google Scholar 

  • Ballarin A, Benjamin C, Tomazello Filho MT, Lara Palma H (2007) Wood properties characterization of Eucalyptus grandis trees from 29 years-old managed plantation. In: Eucalypts and diversity: balancing productivity and sustainability, IUFRO conference, Durban, South Africa, 22–26 October 2007

  • Balocchi C, Bridgwater F, Zobel B, Jahromi S (1993) Age trends in genetic parameters for tree height in a non-selected population of Loblolly pine. For Sci 39:231–251

    Google Scholar 

  • Beadle C, Mcleod D, Turnbull CRA, Ratkowsky A, McLeod R (1989) Juvenile/total foliage ratios in Eucalyptus nitens and the growth of stands and individual trees. Trees 3:117–124

    Article  Google Scholar 

  • Blouin MS (1992) Genetic correlations among morphometric traits and rates of growth and differentiation in the green tree frog Hyla cinerea. Evolution 46:735–744

    Article  Google Scholar 

  • Borralho NMG (1994) Heterogeneous selfing rates and dominance effects in estimating heritabilities from open pollinated progeny. Can J For Res 24:1079–1082

    Article  Google Scholar 

  • Borralho NMG, Potts BM (1996) Accounting for native stand characteristics in genetic evaluations of open pollinated progeny from Eucalyptus globulus base population. New For 11:53–64

    Google Scholar 

  • Borralho NMG, Cotterill P, Kanowski P (1992a) Genetic control of growth of Eucalyptus globulus in Portugal. II. Efficiencies of early selection. Silvae Genet 41:70–77

    Google Scholar 

  • Borralho NMG, Kanowski P, Cotterill P (1992b) Genetic control of growth in Eucalyptus globulus in Portugal. I. Genetic and phenotypic parameters. Silvae Genet 41:39–45

    Google Scholar 

  • Borralho NMG, Cotterill PP, Kanowski P (1993) Breeding objectives for pulp production under different industrial cost structures. Can J For Res 23:648–656

    Article  Google Scholar 

  • Bouvet JM, Bailleres H (1995) Expression of some growth and wood property traits among Eucalyptus urophylla x grandis clones in Congo. In: Potts BM, Borralho NMG, Reid JB, Cromer RN, Tibbits WN, Raymond CA (eds) Eucalypt plantations: improving fibre yield and quality. Hobart, Tasmania. CRC for Temperate Hardwood Forestry, Hobart, pp 89–92

    Google Scholar 

  • Bouvet JM, Vigneron P, Saya A (2005) Phenotypic plasticity of growth trajectory and ontogenic allometry in response to density for Eucalyptus hybrid clones and families. Ann Bot 96:811–821

    Article  PubMed  Google Scholar 

  • Bundock P, Potts BM, Vaillancourt RE (2007) Detection and stability of quantitative trait loci (QTL) in Eucalyptus globulus. Tree Genet Genom 4:85–95

    Article  Google Scholar 

  • Burgess I, Williams ER, Bell JC, Harwood C, Owen J (1996) The effect of outcrossing rate on the growth of selected families of Eucalyptus grandis. Silvae Genet 45:97–100

    Google Scholar 

  • Callister A, England N (2009) How dense is my blue gum? Methods to predict whole-tree wood density for genetic gain estimation in Eucalyptus globulus. In: Australian Forest Genetics Conference, Forest Products Commission, Perth, Western Australia, Fremantle WA Australia, 20–22 April 2009

  • Chambers PGS, Borralho NMG (1997) Importance of survival in short-rotation tree breeding programs. Can J For Res 27:911–917

    Article  Google Scholar 

  • Chambers PGS, Borralho NMG, Potts BM (1996) Genetic analysis of survival in Eucalyptus globulus ssp. globulus. Silvae Genet 45:107–112

    Google Scholar 

  • Chambers PGS, Potts BM, Tilyard P (1997) The genetic control of flowering precocity in Eucalyptus globulus ssp. globulus. Silvae Genet 46:207–214

    Google Scholar 

  • Cornelius J (1994) Heritabilities and additive genetic coefficients of variation in forest trees. Can J For Res 24:372–379

    Article  Google Scholar 

  • Costa e Silva J, Dutkowski GW, Borralho NMG (2005) Across-site heterogeneity of genetic and environmental variances in the genetic evaluation of Eucalyptus globulus trials for height growth. Ann For Sci 62:183–191

    Article  Google Scholar 

  • Costa e Silva J, Potts BM, Dutkowski GW (2006) Genotype by environment interaction for growth of Eucalyptus globulus in Australia. Tree Genet Genom 2:61–75

    Article  Google Scholar 

  • Costa e Silva J, Borralho NMG, Araujo JA, Vaillancourt RE, Potts BM (2009) Genetic parameters for growth, wood density and pulp yield in Eucalyptus globulus. Tree Genet Genom 5:291–305

    Article  Google Scholar 

  • Cotterill P, Dean CA (1990) Successful tree breeding with index selection. CSIRO Division of Forestry and Forest Products, Melbourne

    Google Scholar 

  • Dean GH, French J, Tibbits W (1990) Variation in pulp and papermaking characteristics on a field trial of E. globulus. In: 44th Appita General Conference, Rotorua New Zealand. (APPITA)

  • Dieters MJ, Jarvis S, Gilmour AR (1999) Multivariate approach to estimation of genetic parameters. In: 25th Biennial Southern forest tree improvement conference, Louisiana State University, New Orleans, USA, 11–14 July 1999

  • Downes GM, Hudson I, Raymond CA, Dean GH, Michell AJ, Schimleck LR, Evans R, Muneri A (1997) Sampling plantation eucalypts for wood and fibre properties. CSIRO Australia, Melbourne

    Google Scholar 

  • Downes G, Catela F, Meder R (2007) Developing and evaluating a global near-infrared calibration for the prediction of kraft pulp yield in eucalypts. In: Eucalypts and diversity: balancing productivity and sustainability, IUFRO Conference, Durban, South Africa, 22–26 October 2007

  • Dutkowski GW (1995) Genetic variation in drought susceptibility of Eucalyptus globulus ssp globulus in plantations in Western Australia. In: Eucalypt plantations: improving fibre yield and quality, CRC for Temperate Hardwood Forestry, Hobart, Tasmania, 19–24 February 1995

  • Dutkowski GW, Potts BM (1999) Geographic patterns of genetic variation in Eucalyptus globulus ssp globulus and a revised racial classification. Aust J Bot 47:237–263

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman, Harlow

    Google Scholar 

  • Franklin EC (1979) Model relating levels of genetic variance to stand development of four North American conifers. Silvae Genet 28:207–212

    Google Scholar 

  • Fujimoto T, Kita K, Uchiyama K, Kuromaru M, Akutsu H, Oda K (2006) Age trends in the genetic parameters of wood density and the relationship with growth rates in hybrid larch (Larix bmelini var. japonica x L. kaempferi) F1. J For Res 11:157–163

    Article  Google Scholar 

  • Gilmour AR, Thompson R, Cullis BR, Welham SJ (2001) ASREML reference manual. NSW Agriculture, Orange

    Google Scholar 

  • Greaves BL, Borralho NMG, Raymond CA (1997a) Breeding objective for plantation eucalypts grown for production of kraft pulp. For Sci 43:465–472

    Google Scholar 

  • Greaves BL, Borralho NMG, Raymond CA, Evans R, Whiteman P (1997b) Age–age correlations in, and relationships between basic density and growth in Eucalyptus nitens. Silvae Genet 46:264–270

    Google Scholar 

  • Greaves BL, Borralho NMG, Raymond CA (2003) Early selection in eucalypt breeding in Australia—optimum selection age to minimise the total cost of kraft pulp production. New For 25:201–210

    Google Scholar 

  • Griffin AR, Cotterill P (1988) Genetic variation in growth of outcrossed, selfed and open-pollinated progenies of Eucalyptus regnans and some implications for breeding strategy. Silvae Genet 37:124–131

    Google Scholar 

  • Gwaze DP, Bridgwater F, Byram TD, Woolliams J, Williams C (2000) Predicting age–age genetic correlations in tree-breeding programs: a case study of Pinus taeda L. Theor Appl Genet 100:199–206

    Article  Google Scholar 

  • Hadfield J (2008) Estimating evolutionary parameters when viability selection is operating. Proc R Soc 275:723–734

    Article  Google Scholar 

  • Hamilton M, Greaves BL, Potts BM, Dutkowski GW (2007) Patterns of longitudinal within-tree variation in pulpwood and solidwood traits differ among Eucalyptus globulus genotypes. Ann For Sci 64:831-837

    Google Scholar 

  • Hannrup B, Ekberg I (1998) Age-age correlations for tracheid length and wood density in Pinus sylvestris. Can J For Res 28:1373–1379

    Article  Google Scholar 

  • Hannrup B, Wilhelmsson L, Danell O (1998) Time trends for genetic parameters of wood density and growth traits in Pinus sylvestris L. Silvae Genet 47:214–219

    Google Scholar 

  • Hardner CM, Potts BM (1995) Inbreeding depression and changes in variation after selfing in Eucalyptus globulus ssp. globulus. Silvae Genet 44:46–54

    Google Scholar 

  • Hardner CM, Potts BM (1997) Post-dispersal selection under mixed-mating in Eucalyptus regnans. Evolution 51:103–111

    Article  Google Scholar 

  • Hardner CM, Potts BM, Gore PL (1998) The relationship between cross success and spatial proximity of Eucalyptus globulus ssp. globulus parents. Evolution 52:614–618

    Article  Google Scholar 

  • Harrand L, Hernández JJV, Upton JL, Valverde GR (2009) Genetic parameters of growth traits and wood density in Eucalyptus grandis progenies planted in Argentina. Silvae Genet 58:11–19

    Google Scholar 

  • Hodge GR, Volker PW, Potts BM, Owen JV (1996) A comparison of genetic information from open-pollinated and control-pollinated progeny tests in two eucalypt species. Theor Appl Genet 92:53–63

    Article  Google Scholar 

  • Ignacio-Sanchez E, Vargas-Hernandez JJ, Lopez-Upton J, Borja-de la Rosa A (2005) Genetic parameters for growth and wood density in juvenile Eucalyptus urophylla S. T. Blake. Agrociencia 39:469–479

    Google Scholar 

  • Jordan G, Potts BM, Wiltshire RJ (1999) Strong independent quantitative genetic control of the timing of vegetative phase change and first flowering in Eucalyptus globulus ssp. globulus (Tasmanian Blue Gum). Heredity 83:179–187

    Article  PubMed  Google Scholar 

  • Jordan GJ, Potts BM, Chalmers P, Wiltshire RE (2000) Quantitative genetic evidence that the timing of vegetative phase change in Eucalyptus globulus ssp. globulus is an adaptive trait. Aust J Bot 48:561–567

    Article  Google Scholar 

  • Kien ND, Jansson G, Harwood CE, Almqvist C, Thinh HH (2008) Genetic variation in wood basic density and Pilodyn penetration and their relationships with growth, stem straightness, and branch size for Eucalyptus urophylla in Northern Vietnam. NZ J For Sci 38:160–174

    Google Scholar 

  • Klein T, DeFries J, Finkbeiner C (1973) Heritability and genetic correlation: standard errors of estimates and sample size. Behav Genet 3:355–364

    Article  PubMed  CAS  Google Scholar 

  • Kube P, Raymond CA, Banham P (2001) Breeding Eucalyptus nitens to improve wood quality and profitability. In: Developing the eucalypt of the future, IUFRO, Valdivia, Chile, 10–15 September 2001

  • Li Y, Dutkowski GW, Apiolaza L, Pilbeam D, Costa e Silva J, Potts BM (2007) The genetic architecture of a Eucalyptus globulus full-sib breeding population in Australia. For Genet 12:167–179

    Google Scholar 

  • Loo J, Tauer C, van Buijtenen J (1984) Juvenile–mature relationships and heritability estimates of several traits in loblolly pine (Pinus taeda). Can J For Res 14:822–825

    Article  Google Scholar 

  • Lopez GA, Potts BM, Dutkowski GW, Apiolaza LA, Gelid PE (2002) Genetic variation and inter-trait correlations in Eucalyptus globulus base population trials in Argentina. For Genet 9:217–231

    Google Scholar 

  • Lopez GA, Potts BM, Vaillancourt RE, Apiolaza LA (2003) Maternal and carryover effects on early growth of Eucalyptus globulus. Can J For Res 33:2108–2115

    Article  Google Scholar 

  • MacDonald AC, Borralho NMG, Potts BM (1997) Genetic variation for growth and wood density in Eucalyptus globulus ssp. globulus in Tasmania (Australia). Silvae Genet 46:236–241

    Google Scholar 

  • Magnussen S (1989) Effects and adjustments of competition bias in progeny trials with single-tree plots. For Sci 35:532–547

    Google Scholar 

  • Matheson AC, Raymond CA (1984) Effects of thinning in progeny tests on estimates of genetic parameters in Pinus radiata. Silvae Genet 33:125–128

    Google Scholar 

  • McGowen MH (2007) Genetic control of reproductive traits in Eucalyptus globulus. Ph.D. thesis, University of Tasmania

  • McRae T, Apiolaza LA, Dutkowski GW, Kerr R, Pilbeam D, Powell M, Tier B (2003) Treeplan—a genetic evaluation system for forest trees. In: 27th Bienial Southern Forest Tree Improvement Conference, Stillwater, Oklahoma, USA, 24–27 June 2003

  • Milgate A, Potts BM, Joyce K, Mohammed C, Vaillancourt RE (2005) Genetic variation in Eucalyptus globulus for susceptibility to Mycosphaerella nubilosa and its association with growth rate. Aust Plant Pathol 34:11–18

    Article  Google Scholar 

  • Miranda I, Almeida MH, Pereira H (2001) Provenance and site variation of wood density in Eucalyptus globulus Labill., at harvest age and its relation to a non-destructive early assessment. For Ecol Manage 149:235–240

    Article  Google Scholar 

  • Muneri A, Raymond CA (2000) Genetic parameters and genotype-by-environment interactions for basic density, pilodyn penetration and stem diameter in Eucalyptus globulus. Forest Genetics 7:317–328

    Google Scholar 

  • Olsen M (2007) Wood ontogeny as a model for studying heterochrony with an example of paedomorphosis in Moringa (Moringaceae). Syst Biodivers 5:145–158

    Article  Google Scholar 

  • O’Reilly-Wapstra JM, McArthur C, Potts BM (2002) Genetic variation in resistance of Eucalyptus globulus to marsupial browsers. Oecologia 130:289–296

    Google Scholar 

  • Osorio LF, White TL, Huber DA (2001) Age trends of heritabilities and genotype-by-environment interactions for growth traits and wood density from clonal trials of Eucalyptus grandis Hill ex Maiden. Silvae Genet 50:108–117

    Google Scholar 

  • Osorio LF, White TL, Huber DA (2003) Age–age and trait–trait correlations for Eucalyptus grandis Hill ex Maiden and their implications for optimal selection age and design of clonal trials. Theor Appl Genet 106:735–743

    PubMed  CAS  Google Scholar 

  • Potts BM, Vaillancourt RE et al (2004) Exploration of the Eucalyptus globulus gene pool. In: Eucalyptus in a changing world, IUFRO, Aviero, Portugal, 11–15 October 2004

  • Rapley LP, Allen GR, Potts BM (2004) Genetic variation in Eucalyptus globulus in relation to susceptibility from attack by the southern eucalypt leaf beetle, Chrysophtharta agricola. Aust J Bot 52:747–756

    Article  Google Scholar 

  • Raymond CA (2002) Genetics of Eucalyptus wood properties. Ann For Sci 59:525–531

    Article  Google Scholar 

  • Raymond CA, Muneri A (2001) Non-destructive sampling of Eucalyptus globulus and E. nitens for wood properties. I. Basic density. Wood Sci Technol 35:27–39

    Article  CAS  Google Scholar 

  • Raymond CA, Schimleck LR, Muneri A, Michell AJ (2001) Genetic parameters and genotype-by-environment interactions for pulp yield predicted using near infrared reflectance analysis and pulp productivity in Eucalyptus globulus. For Genet 8:213–224

    Google Scholar 

  • Retief E, Stanger T, Galloway G (2001) Early results from a trial to test the effect of plot design on Eucalyptus hybrid clonal ranking in coastal Zululand, South Africa. In: Developing the eucalypt of the future, IUFRO, Valdivia, Chile, 10–15 September 2001

  • Sanhueza RP, White TL, Huber DA, Griffin AR (2002) Genetic parameters estimates, selection indices and predicted genetic gains from selection of Eucalyptus globulus in Chile. For Genet 9:19–29

    Google Scholar 

  • SAS Institute Inc (2002) SAS/STAT users guide, version 9. SAS Institute, Cary

    Google Scholar 

  • Schneeberger M, Barwick SA, Crow GH, Hammond K (1992) Economic indices using breeding values predicted by BLUP. J Anim Breed Genet 109:180–187

    Google Scholar 

  • Self SG, Liang KY (1987) Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J Am Stat Assoc 82:605–610

    Article  Google Scholar 

  • Sgro C, Hoffman A (2004) Genetic correlations, tradeoffs and environmental variation. Heredity 93:241–248

    Article  PubMed  CAS  Google Scholar 

  • Steane DA, Conod N, Jones RC, Vaillancourt RE, Potts BM (2006) A comparative analysis of population structure of a forest tree, Eucalyptus globulus (Myrtaceae), using microsatellite markers and quantitative traits. Tree Genet Genom 2:30–38

    Article  Google Scholar 

  • Stram DO, Lee JW (1994) Variance components testing in the longitudinal mixed effects model. Biometrics 50:1171–1177

    Article  PubMed  CAS  Google Scholar 

  • Suitor S, Potts BM, Brown PH, Gracie AJ, Gore PL (2008) Post-pollination capsule development in Eucalyptus globulus seed orchards. Aust J Bot 56:51–58

    Article  Google Scholar 

  • TAPPI (1989) Basic density and moisture content of pulpwood T258 om-98. Technical Association of the Pulp and Paper Industry, Norcross

    Google Scholar 

  • Tibbits W, White T, Hodge G, Borralho N (2006) Genetic variability in freezing tolerance of Eucalyptus globulus ssp globulus assessed by artificial freezing in winter. Aust J Bot 54:521–529

    Article  Google Scholar 

  • Tibbits WN, Boomsma DB, Jarvis S (1997) Distribution, biology, genetics and improvement programs for Eucalyptus globulus and E. nitens around the world. In: 24th Biennial Southern Forest Tree Improvement Conference, University of Florida, Gainesville USA 9-12 June 1997

  • van Wyk G, Pierce BT, Verryn SD (1991) Two year results from a site by clone interaction trial series of Eucalyptus grandis. In: Intensive forestry: the role of eucalypts, P2.02-01 productivity of eucalypts, Southern African Institute of Forestry, Durban, South Africa, 2–6 September 1991

  • Volker PW (2002) Quantitative genetics of Eucalyptus globulus, E. nitens and their F1 hybrid. Ph.D. thesis, University of Tasmania

  • Volker PW, Potts BM, Borralho NMG (2008) Genetic parameters of intra- and inter-specific hybrids of Eucalyptus globulus and E. nitens. Tree Genet Genom 4:445–460

    Article  Google Scholar 

  • Watkins T (2001) A quantitative genetic test of adaptive decoupling across metamorphosis for locomotor and life-history traits in the Pacific tree frog Hyla regilla. Evolution 55:1668–1677

    PubMed  CAS  Google Scholar 

  • Wei X, Borralho NMG (1997) Genetic control of wood basic density and bark thickness and their relationships with growth traits of Eucalyptus urophylla in south east China. Silvae Genet 46:245–250

    Google Scholar 

  • Wei X, Borralho NMG (1998) Use of individual tree mixed models to account for mortality and selective thinning when estimating base population genetic parameters. For Sci 44:246–253

    Google Scholar 

  • White TL, Adams WT, Neale DB (2007) Forest genetics. CABI, Wallingford

    Book  Google Scholar 

  • Wiseman D, Smethurst P, Pinkard L, Wardlaw T, Beadle C, Hall M, Baillie C, Mohammed C (2006) Pruning and fertiliser effects on branch size and decay in two Eucalyptus nitens plantations. For Ecol Manag 225:123-133

  • Xie C, Mosjidis JA (1999) Influence of sample size on precision of genetic correlations in red clover. Crop Sci 39:863–867

    Article  Google Scholar 

  • Zamudio F (1995) On the genotype-by-time interaction: growth increments, stability over time and their effect on genetic gain. Ph.D. thesis, North Carolina State University

  • Zamudio F, Rozenberg P, Baettig R, Vergara A, Yanez M, Gantz C (2005) Genetic variation of wood density components in a radiata pine progeny test located in the south of Chile. Ann For Sci 62:105–114

    Article  Google Scholar 

  • Zar JH (1974) Biostatistical analysis. Prentice Hall, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgments

We thank Kelsey Joyce, Mark Reynolds, Linda Ballard, and Paul Tilyard for their assistance; the CRC for Forestry and the Australian Research Council and partners on Linkage grant LP0453704 for support; and Gunns Ltd for access to the field trial.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desmond J. Stackpole.

Additional information

Communicated by D. Grattapaglia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stackpole, D.J., Vaillancourt, R.E., de Aguigar, M. et al. Age trends in genetic parameters for growth and wood density in Eucalyptus globulus . Tree Genetics & Genomes 6, 179–193 (2010). https://doi.org/10.1007/s11295-009-0239-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-009-0239-4

Keywords

Navigation