Skip to main content
Log in

Chloroplast microsatellite variation in Abies nordmanniana and simulation of causes for low differentiation among populations

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Fifteen populations of Abies nordmanniana, originating from all main parts of its distributional area in the Caucasian region, were genotyped for three chloroplast microsatellites as well as one mitochondrial marker. The chloroplast microsatellites were highly variable, resulting in a total of 111 haplotypes in 361 analysed individuals, while the mitochondrial marker showed no variation. Analysis of molecular variance attributed 2.1% of the variation in the microsatellites to be among populations, and no correlation between geographic distribution and genetic distances among populations could be observed. A simulation study was conducted to investigate to what extent the low genetic differentiation among populations could be a result of size homoplasy in the applied microsatellites. However, the simulations indicated that the low differentiation more likely is caused by high gene flow among populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arbez M (1967) Abies Nordmanniana Spach, Abies Bornmuelleriana Mattfeld. Ann Sci For 24:121–156

    Google Scholar 

  2. Arbez M (1969) Réparation, écologie et variabilité des sapins de Turquie du nord: Abies Nordmanniana Spach, Abies Bornmuelleriana Mattfeld, Abies equi-trojani Ascherson et Sintenis. Ann Sci For 26:257–284

    Google Scholar 

  3. Austerlitz F, Mariette S, Machon N, Gouyon PH, Godelle B (2000) Effects of colonization processes on genetic diversity: differences between annual plants and tree species. Genetics 154:1309–1321

    PubMed  CAS  Google Scholar 

  4. Avise JC (2004) Molecular markers, natural history, and evolution, 2nd edn. Sinauer Associates, Inc., Sunderland, MA, USA (684 pages)

  5. Bowcock AM, Ruiz Linares A, Tomfohrde J, Minch E, Kidd JR (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457

    Article  PubMed  CAS  Google Scholar 

  6. Bucci G, Vendramin GG (2000) Delineation of genetic zones in the European Norway spruce natural range: preliminary evidence. Mol Ecol 9:923–934

    Article  PubMed  CAS  Google Scholar 

  7. Clark CM, Wentworth TR, O'Malley DM (2000) Genetic discontinuity revealed by chloroplast microsatellites in eastern North American Abies (Pinaceae). Am J Bot 87:774–782

    Article  PubMed  Google Scholar 

  8. Clegg MT, Gaut BS, Learn GH, Morton BR (1994) Rates and patterns of chloroplast DNA evolution. Proc Natl Acad Sci U S A 91:6795–6801

    Article  PubMed  CAS  Google Scholar 

  9. Cuenca A, Escalante AE, Piñero D (2003) Long-distance colonization, isolation by distance, and historical demography in a relictual Mexican pinyon pine (Pinus nelsonii Shaw) as revealed by paternally inherited genetic markers (cpSSRs) Mol Ecol 12:2087–2097

    Article  PubMed  CAS  Google Scholar 

  10. Digiovanni F, Kevan PG, Arnold J (1996) Lower planetary boundary layer profiles of atmospheric conifer pollen above a seed orchard in northern Ontario, Canada. For Ecol Manag 83:87–97

    Article  Google Scholar 

  11. Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human-populations. Proc Natl Acad Sci U S A 91:3166–3170

    Article  PubMed  CAS  Google Scholar 

  12. Echt CS, DeVerno LL, Anzidei M, Vendramin GG (1998) Chloroplast microsatellites reveal population genetic diversity in red pine, Pinus resinosa Ait. Mol Ecol 7:307–316

    Article  Google Scholar 

  13. Estoup A, Tailliez C, Cornuet JM, Solignac M (1995) Size homoplasy and mutational processes of interrupted microsatellites in 2 bee species, Apis mellifera and Bombus terrestris (Apidae). Mol Biol Evol 12:1074–1084

    PubMed  CAS  Google Scholar 

  14. Estoup A, Jarne P, Cornuet JM (2002) Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol Ecol 11:1591–1604

    Article  PubMed  CAS  Google Scholar 

  15. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes—application to human mitochondrial–DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  16. Farjon A, Rushforth KD (1989) A classification of Abies miller (Pinaceae). Notes R Bot Gard Edinb 46:59–79

    Google Scholar 

  17. Garza JC, Slatkin M, Freimer NB (1995) Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. Mol Biol Evol 12:594–603

    PubMed  CAS  Google Scholar 

  18. Goldstein DB, Linares AR, Cavallisforza LL, Feldman MW (1995) An evaluation of genetic distances for use with microsatellite loci. Genetics 139:463–471

    PubMed  CAS  Google Scholar 

  19. Gomez A, Gonzalez-Martinez SC, Collada C, Climent J, Gil L (2003) Complex population genetic structure in the endemic Canary Island pine revealed using chloroplast microsatellite markers. Theor Appl Genet 107:1123–1131

    Article  PubMed  CAS  Google Scholar 

  20. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  21. Hardy OJ, Charbonnel N, Freville H, Heuertz M (2003) Microsatellite allele sizes: A simple test to assess their significance on genetic differentiation. Genetics 163:1467–1482

    PubMed  CAS  Google Scholar 

  22. Jacobsen F (1988) Juletræer og Klippegrønt. In: Henriksen HA (ed) Skoven og dens dyrkning. Dansk Skovforening, Nyt Nordisk forlag Arnold Busck, Copenhagen, pp 607–636

    Google Scholar 

  23. Jarne P, Lagoda PJL (1996) Microsatellites, from molecules to populations and back. Trends Ecol Evol 11:424–429

    Article  Google Scholar 

  24. Karhu A, Hurme P, Karjalainen M, Karvonen P, Karkkainen K, Neale D, Savolainen O (1996) Do molecular markers reflect patterns of differentiation in adaptive traits of conifers? Theor Appl Genet 93:215–221

    Article  CAS  Google Scholar 

  25. Konnert M, Bergmann F (1995) The geographical distribution of genetic variation of silver fir (Abies alba, Pinaceae) in relation to its migration history. Plant Syst Evol 196(12):19–30

    Article  Google Scholar 

  26. Larsen JB, Larsen BG, Kromann HK (1984) Abies nordmanniana provenienser til pyntegront og juletraeer (Provenances of Abies nordmanniana for greenery and Christmas tree production). Forstl Forsvaes Dan 39:363–382

    Google Scholar 

  27. Larsen JB (1997) Traearts og proveniensvalget i et baeredygtigt skovbrug (Tree species and provenance choice in sustainable forestry). Dan Skovbr Tidsskr 82:1–253

    Google Scholar 

  28. Latta RG, Linhart YB, Fleck D, Elliot M (1998) Direct and indirect estimates of seed versus pollen movement within a population of ponderosa pine. Evolution 52:61–67

    Article  Google Scholar 

  29. Liepelt S, Kuhlenkamp V, Anzidei M, Vendramin GG, Ziegenhagen B (2001) Pitfalls in determining size homoplasy of microsatellite loci. Mol Ecol Notes 1:332–335

    Article  CAS  Google Scholar 

  30. Liepelt S, Bialozyt R, Ziegenhagen B (2002) Wind-dispersed pollen mediates postglacial gene flow among refugia. Proc Natl Acad Sci U S A 99:14590–14594

    Article  PubMed  CAS  Google Scholar 

  31. Liu T-S (1971) A monograph of the genus Abies. Department of Forestry, National Taiwan University, Taipei, Taiwan, China

  32. Løfting ECL (1961) Abies nordmanniana i Kaukasus. Dan Skovforen Tidsskr 46:426–455

    Google Scholar 

  33. Løfting ECL (1973) A survey of the present state of Abies nordmanniana in Denmark. Forstl Forsøgsvæs Dan 33:303–326

    Google Scholar 

  34. Madsen SF (1994) Provenance trial of Abies nordmanniana and Abies bornmuelleriana for Christmas tree production in North Sealand. For Landsc Res 1:143–166

    Google Scholar 

  35. Mills LS, Allendorf FW (1996) The one-migrant-per-generation rule in conservation and management. Conserv Biol 10:1509–1518

    Article  Google Scholar 

  36. Nauta MJ, Weissing FJ (1996) Constraints on Allele size at microsatellite loci: implications for genetic differentiation. Genetics 143:1021–1032

    PubMed  CAS  Google Scholar 

  37. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

  38. Nielsen UB (1993) Breeding noble fir (Abies procera Rehder) and nordmann fir (Abies nordmanniana (Stev.) Spach) for Christmas trees and greenery in Denmark. Proceedings of the Nordic group for tree breeding, Forestry Commision, Edinburgh, Scotland, pp 118–127

  39. Palme AE, Semerikov V, Lascoux M (2003) Absence of geographical structure of chloroplast DNA variation in sallow, Salix caprea L. Heredity 91:465–474

    Article  PubMed  CAS  Google Scholar 

  40. Parducci L, Szmidt AE, Madaghiele A, Anzidei M, Vendramin GG (2001) Genetic variation at chloroplast microsatellites (cpSSRs) in Abies nebrodensis (Lojac.) Mattei and three neighboring Abies species. Theor Appl Genet 102:733–740

    Article  CAS  Google Scholar 

  41. Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147

    Article  PubMed  Google Scholar 

  42. Ribeiro MM, Plomion C, Petit R, Vendramin GG, Szmidt AE (2001) Variation in chloroplast single-sequence repeats in Portuguese maritime pine (Pinus pinaster Ait.). Theor Appl Genet 102:97–103

    Article  CAS  Google Scholar 

  43. Ribeiro MM, Mariette S, Vendramin GG, Szmidt AE, Plomion C, Kremer A (2002) Comparison of genetic diversity estimates within and among populations of maritime pine using chloroplast simple-sequence repeat and amplified fragment length polymorphism data. Mol Ecol 11:869–877

    Article  PubMed  CAS  Google Scholar 

  44. Robledo-Arnuncio JJ, Gil L (2005) Patterns of pollen dispersal in a small population of Pinus sylvestris L. revealed by total-exclusion paternity analysis. Heredity 94:13–22

    Article  PubMed  CAS  Google Scholar 

  45. Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.000: a software for population genetic data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

  46. Semerikov VL, Lascoux M (2003) Nuclear and cytoplasmic variation within and between Eurasian Larix (Pinaceae) species. Am J Bot 90:1113–1123

    CAS  Google Scholar 

  47. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    PubMed  CAS  Google Scholar 

  48. Spitze K (1993) Population-structure in Daphnia obtusa—quantitative genetic and allozymic variation. Genetics 135:367–374

    PubMed  CAS  Google Scholar 

  49. Vendramin GG, Lelli L, Rossi P, Morgante M (1996) A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Mol Ecol 5:595–598

    Article  PubMed  CAS  Google Scholar 

  50. Vendramin GG, Ziegenhagen B (1997) Characterisation and inheritance of polymorphic plastid microsatellites in Abies. Genome 40:857–864

    Article  PubMed  CAS  Google Scholar 

  51. Vendramin GG, Degen B, Petit RJ, Anzidei M, Madaghiele A, Ziegenhagen B (1999) High level of variation at Abies alba chloroplast microsatellite loci in Europe. Mol Ecol 8:1117–1126

    Article  PubMed  Google Scholar 

  52. Vendramin GG, Anzidei M, Madaghiele A, Sperisen C, Bucci G (2000) Chloroplast microsatellite analysis reveals the presence of population subdivision in Norway spruce (Picea abies K.). Genome 43:68–78

    Article  PubMed  CAS  Google Scholar 

  53. Viard F, El Kassaby YA, Ritland K (2001) Diversity and genetic structure in populations of Pseudotsuga menziesii (Pinaceae) at chloroplast microsatellite loci. Genome 44:336–344

    Article  PubMed  CAS  Google Scholar 

  54. Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M (1994) Loss of all Ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci U S A 91:9794–9798

    Article  PubMed  CAS  Google Scholar 

  55. Yang RC, Yeh FC, Yanchuk AD (1996) A comparison of isozyme and quantitative genetic variation in Pinus contorta ssp latifolia by F-ST. Genetics 142:1045–1052

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Danish Foundation “Foreningen Plan-Danmark” has supported O.K. Hansens' laboratory work and stay at Plant Genetics Institute, Florence, under the National Research Council, Italy. Thanks to Silvia Carnevale and Roberta Pastorelli for kind and patient help during the laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. K. Hansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, O.K., Kjær, E.D. & Vendramin, G.G. Chloroplast microsatellite variation in Abies nordmanniana and simulation of causes for low differentiation among populations. Tree Genetics & Genomes 1, 116–123 (2005). https://doi.org/10.1007/s11295-005-0016-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-005-0016-y

Keywords

Navigation