Skip to main content
Log in

Unravelling the dynamics of organisms in a changing world using ecological modelling

  • Miyadi Award
  • Published:
Ecological Research

Abstract

Understanding and predicting the dynamics of organisms is a central objective in ecology and conservation biology, and modelling provides a solution to tackling this problem. However, the complex nature of ecological systems means that for a thorough understanding of ecological dynamics at hierarchical scales, a set of modeling approaches need to be adopted. This review illustrates how modelling approaches can be used to understand the dynamics of organisms in applied ecological problems, focussing on mechanistic models at a local scale and statistical models at a broad scale. Mechanistic models incorporate ecological processes explicitly and thus are likely to be robust under novel conditions. Models based on behavioural decisions by individuals represent a typical example of the successful application of mechanistic models to applied problems. Considering the data-hungry nature of such mechanistic models, model complexity and parameterisation need to be explored further for a quick and widespread implementation of this model type. For broad-scale phenomena, statistical models play an important role in dealing with problems that are often inherent in data. Examples include models for quantifying population trends from long-term, large-scale data and those for comparative methods of extinction risk. Novel statistical approaches also allow mechanistic models to be parameterised using readily obtained data at a macro scale. In conclusion, the complementary use and improvement of multiple model types, the increased use of novel model parameterisation, the examination of model transferability and the achievement of wider biodiversity information availability are key challenges for the effective use of modelling in applied ecological problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akçakaya HR, Burgman MA, Ginzburg LR (1999) Applied population ecology: principles and computer exercises using RAMAS EcoLab 2.0, 2nd edn. Sinauer, Sunderland

  • Amano T, Yamaura Y (2007) Ecological and life-history traits related to range contractions among breeding birds in Japan. Biol Conserv 137:271–282

    Article  Google Scholar 

  • Amano T, Ushiyama K, Fujita G, Higuchi H (2004) Factors affecting rice grain density unconsumed by white-fronted geese in relation to wheat damage. Agric Ecosyst Environ 102:403–407

    Article  Google Scholar 

  • Amano T, Ushiyama K, Fujita G, Higuchi H (2006a) Foraging patch selection and departure by non-omniscient foragers: a field example in white-fronted geese. Ethology 112:544–553

    Article  Google Scholar 

  • Amano T, Ushiyama K, Moriguchi S, Fujita G, Higuchi H (2006b) Decision-making in group foragers with incomplete information: test of individual-based model in Geese. Ecol Monogr 76:601–616

    Article  Google Scholar 

  • Amano T, Ushiyama K, Fujita G, Higuchi H (2007) Predicting grazing damage by white-fronted geese under different regimes of agricultural management and the physiological consequences for the geese. J Appl Ecol 44:506–515

    Article  Google Scholar 

  • Amano T, Ushiyama K, Higuchi H (2008) Methods of predicting risks of wheat damage by white-fronted geese. J Wildl Manag 72:1845–1852

    Article  Google Scholar 

  • Amano T, Székely T, Koyama K, Amano H, Sutherland WJ (2010) A framework for monitoring the status of populations: an example from wader populations in the East Asian-Australasian flyway. Biol Conserv 143:2238–2247

    Article  Google Scholar 

  • Amano T, Kusumoto Y, Okamura H, Baba YG, Hamasaki K, Tanaka K, Yamamoto S (2011) A macro-scale perspective on within-farm management: how climate and topography alter the effect of farming practices. Ecol Lett 14:1263–1272

    Article  PubMed  Google Scholar 

  • Amano T, Okamura H, Carrizo SF, Sutherland WJ (2012) Hierarchical models for smoothed population indices: the importance of considering variations in trends of count data among sites. Ecol Indic 13:243–252

    Article  Google Scholar 

  • Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Glob Ecol Biogeogr 16:743–753

    Article  Google Scholar 

  • Baillie SR, Marchant JH, Leech DI, Renwick AR, Joys AC, Noble DG, Barimore C, Conway GJ, Downie IS, Risely K, Robinson RA (2010) Breeding birds in the wider countryside: their conservation status 2010. BTO Research Report No. 565, Thetford, UK. (http://www.bto.org/birdtrends)

  • Balmford A, Bennun L, ten Brink B, Cooper D, Côté I, Crane P, Dobson A, Dudley N, Dutton I, Green R, Gregory R, Harrison J, Kennedy E, Kremen C, Leader-Williams N, Lovejoy T, Mace G, May R, Mayaux P, Morling P, Phillips J, Redford K, Ricketts T, Rodriguez J, Sanjayan M, Schei P, van Jaarsveld A, Walther B (2005) The convention on biological diversity’s 2010 target. Science 307:212–213

    Article  PubMed  CAS  Google Scholar 

  • Bar-David S, Saltz D, Dayan T (2005) Predicting the spatial dynamics of a reintroduced population: the Persian fallow deer. Ecol Appl 15:1833–1846

    Article  Google Scholar 

  • Battersby J, Partnership TM (2005) UK mammals: species status and population trends: first report by the tracking mammals partnership. JNCC/Tracking Mammals Partnership, Peterborough, UK

  • Bauer S, Madsen J, Klaassen M (2006) Intake rates, stochasticity, or onset of spring—what aspects of food availability affect spring migration patterns in Pink-footed Geese Anser brachyrhynchus? Ardea 94:555–566

    Google Scholar 

  • Bauer S, Van Dinther M, Hogda KA, Klaassen M, Madsen J (2008) The consequences of climate-driven stop-over sites changes on migration schedules and fitness of Arctic geese. J Anim Ecol 77:654–660

    Article  PubMed  Google Scholar 

  • Beale CM, Lennon JJ, Gimona A (2008) Opening the climate envelope reveals no macroscale associations with climate in European birds. Proc Natl Acad Sci USA 105:14908–14912

    Article  PubMed  CAS  Google Scholar 

  • Beaumont MA (2010) Approximate Bayesian computation in evolution and ecology. Annu Rev Ecol Evol Syst 41:379–406

    Article  Google Scholar 

  • Bennett PM, Owens IPF (1997) Variation in extinction risk among birds: chance or evolutionary predisposition? Proc R Soc B Biol Sci 264:401–408

    Article  Google Scholar 

  • Bernstein C, Kacelnik A, Krebs JR (1988) Individual decisions and the distribution of predators in a patchy environment. J Anim Ecol 57:1007–1026

    Article  Google Scholar 

  • Bielby J, Cardillo M, Cooper N, Purvis A (2010) Modelling extinction risk in multispecies data sets: phylogenetically independent contrasts versus decision trees. Biodivers Conserv 19:113–127

    Article  Google Scholar 

  • Bled F, Royle JA, Cam E (2011) Hierarchical modeling of an invasive spread: the Eurasian Collared-Dove Streptopelia decaocto in the United States. Ecol Appl 21:290–302

    Article  PubMed  Google Scholar 

  • Block BA, Jonsen ID, Jorgensen SJ, Winship AJ, Shaffer SA, Bograd SJ, Hazen EL, Foley DG, Breed GA, Harrison AL, Ganong JE, Swithenbank A, Castleton M, Dewar H, Mate BR, Shillinger GL, Schaefer KM, Benson SR, Weise MJ, Henry RW, Costa DP (2011) Tracking apex marine predator movements in a dynamic ocean. Nature 475:86–90

    Article  PubMed  CAS  Google Scholar 

  • Boettiger AN, Wittemyer G, Starfield R, Volrath F, Douglas-Hamilton I, Getz WM (2011) Inferring ecological and behavioral drivers of African elephant movement using a linear filtering approach. Ecology 92:1648–1657

    Article  PubMed  Google Scholar 

  • Bradbury RB, Payne RJH, Wilson JD, Krebs JR (2001) Predicting population responses to resource management. Trends Ecol Evol 16:440–445

    Article  Google Scholar 

  • Bradley BA, Blumenthal DM, Wilcove DS, Ziska LH (2010) Predicting plant invasions in an era of global change. Trends Ecol Evol 25:310–318

    Article  PubMed  Google Scholar 

  • Brander KM (2007) Global fish production and climate change. Proc Natl Acad Sci USA 104:19709–19714

    Article  PubMed  CAS  Google Scholar 

  • Broennimann O, Treier UA, Muller-Scharer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709

    Article  PubMed  CAS  Google Scholar 

  • Brook BW, O’Grady JJ, Chapman AP, Burgman MA, Akçakaya HR, Frankham R (2000) Predictive accuracy of population viability analysis in conservation biology. Nature 404:385–387

    Article  PubMed  CAS  Google Scholar 

  • Brown JH (1999) Macroecology: progress and prospect. Oikos 87:3–14

    Article  Google Scholar 

  • Brown JH, Maurer BA (1989) Macroecology: the division of food and space among species on continents. Science 243:1145–1150

    Article  PubMed  CAS  Google Scholar 

  • Brun M, Abraham C, Jarry M, Dumas J, Lange F, Prévost E (2011) Estimating an homogeneous series of a population abundance indicator despite changes in data collection procedure: a hierarchical Bayesian modelling approach. Ecol Model 222:1069–1079

    Article  Google Scholar 

  • Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque J-F, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Morcillo MH, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vie J-C, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168

    Article  PubMed  CAS  Google Scholar 

  • Butler SJ, Mattison EHA, Glithero NJ, Robinson LJ, Atkinson PW, Gillings S, Vickery JA, Norris K (2010) Resource availability and the persistence of seed-eating bird populations in agricultural landscapes: a mechanistic modelling approach. J Appl Ecol 47:67–75

    Article  Google Scholar 

  • Caldow RWG, Goss-Custard JD, Stillman RA, Durell SEALeVdit, Swinfen R, Bregnballe T (1999) Individual variation in the competitive ability of interference-prone foragers: the relative importance of foraging efficiency and susceptibility to interference. J Anim Ecol 68:869–878

    Article  Google Scholar 

  • Cardillo M, Purvis A, Sechrest W, Gittleman JL, Bielby J, Mace GM (2004) Human population density and extinction risk in the world’s carnivores. PLoS Biol 2:909–914

    Article  CAS  Google Scholar 

  • Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Emonds ORP, Sechrest W, Orme CDL, Purvis A (2005) Multiple causes of high extinction risk in large mammal species. Science 309:1239–1241

    Article  PubMed  CAS  Google Scholar 

  • Cardillo M, Mace GM, Gittleman JL, Jones KE, Bielby J, Purvis A (2008) The predictability of extinction: biological and external correlates of decline in mammals. Proc R Soc B Biol Sci 275:1441–1448

    Article  Google Scholar 

  • Catry I, Amano T, Franco A, Sutherland W (2012) Influence of spatial and temporal dynamics of agricultural practices on the lesser kestrel. J Appl Ecol 49:99–108. doi:10.1111/j.1365-2664.2011.02071.x

    Google Scholar 

  • Clark JS (2005) Why environmental scientists are becoming Bayesians. Ecol Lett 8:2–14

    Article  Google Scholar 

  • Clark JS, Gelfand AE (2006) A future for models and data in environmental science. Trends Ecol Evol 21:375–380

    Article  PubMed  Google Scholar 

  • Collen B, Loh J, Whitmee S, McRae L, Amin R, Baillie JEM (2009) Monitoring change in vertebrate abundance: the Living Planet Index. Conserv Biol 23:317–327

    Article  PubMed  Google Scholar 

  • Conrad K, Woiwod I, Parsons M, Fox R, Warren M (2004) Long-term population trends in widespread British moths. J Insect Conserv 8:119–136

    Google Scholar 

  • Coulson T, Mace GM, Hudson E, Possingham H (2001) The use and abuse of population viability analysis. Trends Ecol Evol 16:219–221

    Article  PubMed  Google Scholar 

  • Csilléry K, Blum MGB, Gaggiotti OE, François O (2010) Approximate Bayesian Computation (ABC) in practice. Trends Ecol Evol 25:410–418

    Article  PubMed  Google Scholar 

  • Dalziel BD, Morales JM, Fryxell JM (2008) Fitting probability distributions to animal movement trajectories: using artificial neural networks to link distance, resources, and memory. Am Nat 172:248–258

    Article  PubMed  Google Scholar 

  • Davidson AD, Hamilton MJ, Boyer AG, Brown JH, Ceballos G (2009) Multiple ecological pathways to extinction in mammals. Proc Natl Acad Sci USA 106:10702–10705

    Article  PubMed  CAS  Google Scholar 

  • Davies RG, Orme CDL, Storch D, Olson VA, Thomas GH, Ross SG, Ding TS, Rasmussen PC, Bennett PM, Owens IPF, Blackburn TM, Gaston KJ (2007) Topography, energy and the global distribution of bird species richness. Proc R Soc B Biol Sci 274:1189–1197

    Article  Google Scholar 

  • Davis AJ, Jenkinson LS, Lawton JH, Shorrocks B, Wood S (1998) Making mistakes when predicting shifts in species range in response to global warming. Nature 391:783–786

    Article  PubMed  CAS  Google Scholar 

  • De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192

    Article  Google Scholar 

  • Desdevises Y, Legendre P, Azouzi L, Morand S (2003) Quantifying phylogenetically structured environmental variation. Evolution 57:2647–2652

    PubMed  Google Scholar 

  • Dickinson JL, Zuckerberg B, Bonter DN (2010) Citizen science as an ecological research tool: challenges and benefits. Annu Rev Ecol Evol Syst 41:149–172

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM (2008) Macroecology, global change and the shadow of forgotten ancestors. Glob Ecol Biogeogr 17:11–17

    Article  Google Scholar 

  • Duncan RP, Cassey P, Blackburn TM (2009) Do climate envelope models transfer? A manipulative test using dung beetle introductions. Proc R Soc B Biol Sci 276:1449–1457

    Article  Google Scholar 

  • Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65:169–175

    Article  Google Scholar 

  • Dunning JB, Stewart DJ, Danielson BJ, Noon BR, Root TL, Lamberson RH, Stevens EE (1995) Spatially explicit population models: current forms and future uses. Ecol Appl 5:3–11

    Article  Google Scholar 

  • Durell SEALeVdit, Stillman RA, Caldow RWG, McGrorty S, West AD, Humphreys J (2006) Modelling the effect of environmental change on shorebirds: a case study on Poole Harbour, UK. Biol Conserv 131:459–473

    Article  Google Scholar 

  • Eckert SA, Moore JE, Dunn DC, van Buiten RS, Eckert KL, Halpin PN (2008) Modeling loggerhead turtle movement in the Mediterranean: importance of body size and oceanography. Ecol Appl 18:290–308

    Article  PubMed  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342

    Article  Google Scholar 

  • Evans MR (2012) Modelling ecological systems in a changing world. Philos Trans R Soc B 367:181–190

    Article  Google Scholar 

  • Evans MR, Norris KJ, Benton TG (2012) Predictive ecology: systems approaches. Philos Trans R Soc B 367:163–169

    Article  Google Scholar 

  • Feró O, Stephens PA, Barta Z, McNamara JM, Houston AI (2008) Optimal annual routines: new tools for conservation biology? Ecol Appl 18:1563–1577

    Article  PubMed  Google Scholar 

  • Fewster RM, Buckland ST, Siriwardena GM, Baillie SR, Wilson JD (2000) Analysis of population trends for farmland birds using generalized additive models. Ecology 81:1970–1984

    Article  Google Scholar 

  • Fisher DO, Owens IPF (2004) The comparative method in conservation biology. Trends Ecol Evol 19:391–398

    Article  PubMed  Google Scholar 

  • Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Richers BT, Lin BB, Simpson N, Mayfield MM, DeClerck F (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33

    Article  PubMed  Google Scholar 

  • Forester JD, Ives AR, Turner MG, Anderson DP, Fortin D, Beyer HL, Smith DW, Boyce MS (2007) State-space models link elk movement patterns to landscape characteristics in Yellowstone National Park. Ecol Monogr 77:285–299

    Article  Google Scholar 

  • Freckleton RP, Jetz W (2009) Space versus phylogeny: disentangling phylogenetic and spatial signals in comparative data. Proc R Soc B Biol Sci 276:21–30

    Article  Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160:712–726

    Article  PubMed  CAS  Google Scholar 

  • Fryxell JM, Hazell M, Börger L, Dalziel BD, Haydon DT, Morales JM, McIntosh T, Rosatte RC (2008) Multiple movement modes by large herbivores at multiple spatiotemporal scales. Proc Natl Acad Sci USA 105:19114–19119

    Article  PubMed  CAS  Google Scholar 

  • Garibaldi LA, Aizen MA, Klein AM, Cunningham SA, Harder LD (2010) Global growth and stability of agricultural yield decrease with pollinator dependence. Proc Natl Acad Sci USA 108:5909–5914

    Article  Google Scholar 

  • Gill JA (1996) Habitat choice in pink-footed geese: quantifying the constraints determining winter site use. J Appl Ecol 33:884–892

    Article  Google Scholar 

  • Gill JA, Norris K, Sutherland WJ (2001) Why behavioural responses may not reflect the population consequences of human disturbance. Biol Conserv 97:265–268

    Article  Google Scholar 

  • Goss-Custard JD, Sutherland WJ (1997) Individual behaviour, populations and conservation. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach. Blackwell Science, Oxford, pp 373–395

  • Goss-Custard JD, Stillman RA, Caldow RWG, West AD, Guillemain M (2003) Carrying capacity in overwintering birds: when are spatial models needed? J Appl Ecol 40:176–187

    Article  Google Scholar 

  • Goss-Custard JD, Stillman RA, West AD, Caldow RWG, Triplet P, Durell SEALeVdit, McGrorty S (2004) When enough is not enough: shorebirds and shellfishing. Proc R Soc B Biol Sci 271:233–237

    Article  CAS  Google Scholar 

  • Goss-Custard JD, Burton NHK, Clark NA, Ferns PN, McGrorty S, Reading CJ, Rehfisch MM (2006a) Test of a behavior-based individual-based model: response of shorebird mortality to habitat loss. Ecol Appl 16:2215–2222

    Article  PubMed  Google Scholar 

  • Goss-Custard JD, West AD, Yates MG, Caldow RWG, Stillman RA, Bardsley L, Castilla J, Castro M, Dierschke V, Durell SEALeVdit, Eichhorn G, Ens BJ, Exo K-M, Udayangani-Fernando PU, Ferns PN, Hockey PAR, Gill JA, Johnstone I, Kalejta-Summers B, Masero JA, Moreira F, Nagarajan RV, Owens IPF, Pacheco C, Perez-Hurtado A, Rogers D, Scheiffarth G, Sitters H, Sutherland WJ, Triplet P, Worrall DH, Zharikov Y, Zwarts L, Pettifor RA (2006b) Intake rates and the functional response in shorebirds (Charadriiformes) eating macro-invertebrates. Biol Rev 81:501–529

  • Grafen A (1989) The phylogenetic regression. Philos T R Soc B 326:119–157

    Article  CAS  Google Scholar 

  • Graham CH, Ferrier S, Huettman F, Moritz C, Peterson AT (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19:497–503

    Article  PubMed  Google Scholar 

  • Green JL, Hastings A, Arzberger P, Ayala FJ, Cottingham KL, Cuddington K, Davis F, Dunne JA, Fortin MJ, Gerber L, Neubert M (2005) Complexity in ecology and conservation: mathematical, statistical, and computational challenges. Bioscience 55:501–510

    Article  Google Scholar 

  • Gregory RD, van Strien A, Vorisek P, Gmelig Meyling AW, Noble DG, Foppen RPB, Gibbons DW (2005) Developing indicators for European birds. Philos Trans R Soc B 360:269–288

    Article  Google Scholar 

  • Grimm V, Railsback SF (2005) Individual-based modelling and ecology. Princeton University Press, Princeton

    Google Scholar 

  • Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, Thulke HH (2005) Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310:987–991

    Article  PubMed  CAS  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Guisan A, Lehmann A, Ferrier S, Austin M, Overton JMC, Aspinall R, Hastie T (2006) Making better biogeographical predictions of species’ distributions. J Appl Ecol 43:386–392

    Article  Google Scholar 

  • Hanski I (1999) Metapopulation Ecology. Oxford University Press, Oxford

    Google Scholar 

  • Hartig F, Calabrese JM, Reineking B, Wiegand T, Huth A (2011) Statistical inference for stochastic simulation models—theory and application. Ecol Lett 14:816–827

    Article  PubMed  Google Scholar 

  • Hawkins BA, Field R, Cornell HV, Currie DJ, Guegan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117

    Article  Google Scholar 

  • Heikkinen RK, Luoto M, Araujo MB, Virkkala R, Thuiller W, Sykes MT (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30:751–777

    Article  Google Scholar 

  • Hopkins GW, Freckleton RP (2002) Declines in the numbers of amateur and professional taxonomists: implications for conservation. Anim Conserv 5:245–249

    Article  Google Scholar 

  • IUCN (2011) IUCN red list of threatened species. Version 2011.1. http://www.iucnredlist.org. Accessed 12 Oct 2011

  • Johst K, Brandl R, Pfeifer R (2001) Foraging in a patchy and dynamic landscape: human land use and the white stork. Ecol Appl 11:60–69

    Article  Google Scholar 

  • Jones MB, Schildhauer MP, Reichman OJ, Bowers S (2006a) The new bioinformatics: integrating ecological data from the gene to the biosphere. Annu Rev Ecol Evol Syst 37:519–544

    Article  Google Scholar 

  • Jones MJ, Fielding A, Sullivan M (2006b) Analysing extinction risk in parrots using decision trees. Biodivers Conserv 15:1993–2007

    Article  Google Scholar 

  • Jongejans E, Skarpaas O, Shea K (2008) Dispersal, demography and spatial population models for conservation and control management. Perspect Plant Ecol 9:153–170

    Article  Google Scholar 

  • Jonsen ID, Flemming JM, Myers RA (2005) Robust state-space modeling of animal movement data. Ecology 86:2874–2880

    Article  Google Scholar 

  • Jonsen ID, Myers RA, James MC (2007) Identifying leatherback turtle foraging behaviour from satellite telemetry using a switching state-space model. Mar Ecol Prog Ser 337:255–264

    Article  Google Scholar 

  • Kadoya T, Washitani I (2010) Predicting the rate of range expansion of an invasive alien bumblebee (Bombus terrestris) using a stochastic spatio-temporal model. Biol Conserv 143:1228–1235

    Article  Google Scholar 

  • Kasahara S, Koyama K (2010) Population trends of common wintering waterfowl in Japan: participatory monitoring data from 1996 to 2009. Ornithol Sci 9:23–36

    Article  Google Scholar 

  • Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350

    Article  PubMed  Google Scholar 

  • Kearney MR, Wintle BA, Porter WP (2010) Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv Lett 3:203–213

    Article  Google Scholar 

  • Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD, Holt RD, Hudson P, Jolles A, Jones KE, Mitchell CE, Myers SS, Bogich T, Ostfeld RS (2010) Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468:647–652

    Article  PubMed  CAS  Google Scholar 

  • Kerr JT, Kharouba HM, Currie DJ (2007) The macroecological contribution to global change solutions. Science 316:1581–1584

    Article  PubMed  CAS  Google Scholar 

  • Kéry M, Dorazio RM, Soldaat L, van Strien A, Zuiderwijk A, Royle JA (2009) Trend estimation in populations with imperfect detection. J Appl Ecol 46:1163–1172

    Google Scholar 

  • Kéry M, Royle JA, Schmid H, Schaub M, Volet B, Hafliger G, Zbinden N (2010) Site-occupancy distribution modeling to correct population-trend estimates derived from opportunistic observations. Conserv Biol 24:1388–1397

    Article  PubMed  Google Scholar 

  • Kissling WD, Carl G (2008) Spatial autocorrelation and the selection of simultaneous autoregressive models. Glob Ecol Biogeogr 17:59–71

    Article  Google Scholar 

  • Klaassen M, Bauer S, Madsen J, Tombre I (2006) Modelling behavioural and fitness consequences of disturbance for geese along their spring flyway. J Appl Ecol 43:92–100

    Article  Google Scholar 

  • Kramer-Schadt S, Revilla E, Wiegand T, Breitenmoser U (2004) Fragmented landscapes, road mortality and patch connectivity: modelling influences on the dispersal of Eurasian lynx. J Appl Ecol 41:711–723

    Article  Google Scholar 

  • Kühn I, Böhning-Gaese K, Cramer W, Klotz S (2008) Macroecology meets global change research. Glob Ecol Biogeogr 17:3–4

    Article  Google Scholar 

  • Kuroe M, Yamaguchi N, Kadoya T, Miyashita T (2011) Matrix heterogeneity affects population size of the harvest mice: Bayesian estimation of matrix resistance and model validation. Oikos 120:271–279

    Article  Google Scholar 

  • Lawton JH (1999) Are there general laws in ecology? Oikos 84:177–192

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967

    Article  Google Scholar 

  • Levin SA, Grenfell B, Hastings A, Perelson AS (1997) Mathematical and computational challenges in population biology and ecosystems science. Science 275:334–343

    Article  PubMed  CAS  Google Scholar 

  • Levins R (1966) The strategy of model building in population ecology. Am Sci 54:421–431

    Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by random. For R News 2:18–22

    Google Scholar 

  • Lindenmayer DB, Likens GE (2009) Adaptive monitoring: a new paradigm for long-term research and monitoring. Trends Ecol Evol 24:482–486

    Article  PubMed  Google Scholar 

  • Lindenmayer DB, Likens GE (2011) Losing the culture of ecology. Bull Ecol Soc Am 92:245–246

    Article  Google Scholar 

  • Link WA, Sauer JR (2002) A hierarchical analysis of population change with application to Cerulean Warblers. Ecology 83:2832–2840

    Article  Google Scholar 

  • Link WA, Sauer JR, Niven DK (2006) A hierarchical model for regional analysis of population change using Christmas Bird Count data, with application to the American Black Duck. Condor 108:13–24

    Article  Google Scholar 

  • Ludwig D (1999) Is it meaningful to estimate a probability of extinction? Ecology 80:298–310

    Article  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  PubMed  CAS  Google Scholar 

  • Martínez I, Wiegand T, Julio Camarero J, Batllori E, Gutiérrez E (2011) Disentangling the formation of contrasting tree-line physiognomies combining model selection and Bayesian parameterization for simulation models. Am Nat 177:E136–E152

    Article  PubMed  Google Scholar 

  • Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149:646–667

    Article  Google Scholar 

  • McMahon SM, Harrison SP, Armbruster WS, Bartlein PJ, Beale CM, Edwards ME, Kattge J, Midgley G, Morin X, Prentice IC (2011) Improving assessment and modelling of climate change impacts on global terrestrial biodiversity. Trends Ecol Evol 26:249–259

    Article  PubMed  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: current state and trends, vol 1. Island, Washington DC

    Google Scholar 

  • Mitchell MS, Powell RA (2004) A mechanistic home range model for optimal use of spatially distributed resources. Ecol Model 177:209–232

    Article  Google Scholar 

  • Mitchell MS, Powell RA (2007) Optimal use of resources structures home ranges and spatial distribution of black bears. Anim Behav 74:219–230

    Article  Google Scholar 

  • Moorcroft PR, Lewis MA, Crabtree RL (2006) Mechanistic home range models capture spatial patterns and dynamics of coyote teriitories in Yellowstone. Proc R Soc B Biol Sci 273:1651–1659

    Article  Google Scholar 

  • Morales JM, Haydon DT, Frair J, Holsiner KE, Fryxell JM (2004) Extracting more out of relocation data: building movement models as mixtures of random walks. Ecology 85:2436–2445

    Article  Google Scholar 

  • Moriguchi S, Amano T, Ushiyama K, Fujita G, Higuchi H (2010) Seasonal and sexual differences in migration timing and fat deposition in the Greater White-fronted Goose. Ornithol Sci 9:75–82

    Article  Google Scholar 

  • Morin X, Thuiller W (2009) Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 90:1301–1313

    Article  PubMed  Google Scholar 

  • Mueller T, Fagan WF (2008) Search and navigation in dynamic environments—from individual behaviors to population distributions. Oikos 117:654–664

    Article  Google Scholar 

  • Murray KA, Rosauer D, McCallum H, Skerratt LF (2010) Integrating species traits with extrinsic threats: closing the gap between predicting and preventing species declines. Proc R Soc B Biol Sci 278:1515–1523

    Article  Google Scholar 

  • Nolet BA, Langevoord O, Bevan RM, Engelaar KR, Klaassen M, Mulder RJW, van Dijk S (2001) Spatial variation in tuber depletion by swans explained by differences in net intake rates. Ecology 82:1655–1667

    Article  Google Scholar 

  • Nolet BA, Bevan RM, Klaassen M, Langevoord O, van der Heijden YGJT (2002) Habitat switching by Bewick’s swans: maximization of average long-term energy gain? J Anim Ecol 71:979–993

    Article  Google Scholar 

  • Nolet BA, Gyimesi A, Klaassen RHG (2006a) Prediction of bird-day carrying capacity on a staging site: a test of depletion models. J Anim Ecol 75:1285–1292

    Article  PubMed  Google Scholar 

  • Nolet BA, Klaassen RHG, Mooij WM (2006b) The use of a flexible patch leaving rule under exploitative competition: a field test with swans. Oikos 112:342–352

    Article  Google Scholar 

  • Noss RF (1996) The naturalists are dying off. Conserv Biol 10:1–3

    Article  Google Scholar 

  • Olden JD, Lawler JJ, Poff NL (2008) Machine learning without tears: a practical primer for ecologists. Q Rev Biol 83:171–193

    Article  PubMed  Google Scholar 

  • Orzack SH (2012) The philosophy of modelling or does the philosophy of biology have any use? Philos Trans R Soc B 367:170–180. doi:10.1098/rstb.2011.0265

  • Ovaskainen O, Rekola H, Meyke E, Arjas E (2008) Bayesian methods for analyzing movements in heterogeneous landscapes from mark-recapture data. Ecology 89:542–554

    Article  PubMed  Google Scholar 

  • Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J (2008) State-space models of individual animal movement. Trends Ecol Evol 23:87–94

    Article  PubMed  Google Scholar 

  • Pearman PB, Guisan A, Broennimann O, Randin CF (2008) Niche dynamics in space and time. Trends Ecol Evol 23:149–158

    Article  PubMed  Google Scholar 

  • Pedersen MW, Patterson TA, Thygesen UH, Madsen H (2011) Estimating animal behavior and residency from movement data. Oikos 120:1281–1290

    Article  Google Scholar 

  • Pennisi E (2010) Filling gaps in global biodiversity estimates. Science 330:24

    Article  PubMed  CAS  Google Scholar 

  • Pereira HM, Cooper HD (2006) Towards the global monitoring of biodiversity change. Trends Ecol Evol 21:123–129

    Article  PubMed  Google Scholar 

  • Peterson AT, Soberon J, Sanchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267

    Article  PubMed  CAS  Google Scholar 

  • Pettifor RA, Caldow RWG, Rowcliffe JM, Goss-Custard JD, Black JM, Hodder KH, Houston AI, Lang A, Webb J (2000) Spatially explicit, individual-based, behavioural models of the annual cycle of two migratory goose populations. J Appl Ecol 37:103–135

    Article  Google Scholar 

  • Pocock MJO (2011) Can traits predict species’ vulnerability? A test with farmland passerines in two continents. Proc R Soc B Biol Sci 278:1532–1538

    Article  Google Scholar 

  • Porté A, Bartelink HH (2002) Modelling mixed forest growth: a review of models for forest management. Ecol Model 150:141–188

    Article  Google Scholar 

  • Purvis A (2008) Phylogenetic approaches to the study of extinction. Annu Rev Ecol Evol Syst 39:301–319

    Article  Google Scholar 

  • Purvis A, Agapow PM, Gittleman JL, Mace GM (2000) Nonrandom extinction and the loss of evolutionary history. Science 288:328–330

    Article  PubMed  CAS  Google Scholar 

  • Railsback SF, Harvey BC (2002) Analysis of habitat-selection rules using an individual-based model. Ecology 83:1817–1830

    Google Scholar 

  • Reichman OJ, Jones MB, Schildhauer MP (2011) Challenges and opportunities of open data in ecology. Science 331:703–705

    Article  PubMed  CAS  Google Scholar 

  • Revilla E, Wiegand T (2008) Individual movement behavior, matrix heterogeneity, and the dynamics of spatially structured populations. Proc Natl Acad Sci USA 105:19120–19125

    Article  PubMed  CAS  Google Scholar 

  • Revilla E, Wiegand T, Palomares F, Ferreras P, Delibes M (2004) Effects of matrix heterogeneity on animal dispersal: from individual behavior to metapopulation-level parameters. Am Nat 164:E130–E153

    Article  PubMed  Google Scholar 

  • Reynolds JD (2003) Life histories and extinction risk. In: Blackburn TM, Gaston KJ (eds) MacroecologyBlackwell, Oxford, pp 195–217

  • Rodríguez C, Johst K, Bustamante J (2006) How do crop types influence breeding success in lesser kestrels through prey quality and availability? A modelling approach. J Appl Ecol 43:587–597

    Article  Google Scholar 

  • Root TL, Schneider SH (1995) Ecology and climate—research strategies and implications. Science 269:334–341

    Article  PubMed  CAS  Google Scholar 

  • Rossmanith E, Grimm V, Blaum N, Jeltsch F (2006) Behavioural flexibility in the mating system buffers population extinction: lessons from the lesser spotted woodpecker Picoides minor. J Anim Ecol 75:540–548

    Article  PubMed  Google Scholar 

  • Rowcliffe JM, Watkinson AR, Sutherland WJ, Vickery JA (2001) The depletion of algal beds by geese: a predictive model and test. Oecologia 127:361–371

    Article  Google Scholar 

  • Royle JA, Nichols JD, Kéry M (2005) Modelling occurrence and abundance of species when detection is imperfect. Oikos 110:353–359

    Article  Google Scholar 

  • Safi K, Pettorelli N (2010) Phylogenetic, spatial and environmental components of extinction risk in carnivores. Glob Ecol Biogeogr 19:352–362

    Article  Google Scholar 

  • Satake A, Rudel TK (2007) Modeling the forest transition: forest scarcity and ecosystem service hypotheses. Ecol Appl 17:2024–2036

    Article  PubMed  Google Scholar 

  • Sauer JR, Link WA (2011) Analysis of the North American Breeding Bird Survey using hierarchical models. Auk 128:87–98

    Article  Google Scholar 

  • Sauer JR, Peterjohn BG, Link WA (1994) Observer differences in the North American Breeding Bird Survey. Auk 111:50–62

    Google Scholar 

  • Schick RS, Loarie SR, Colchero F, Best BD, Boustany A, Conde DA, Halpin PN, Joppa LN, McClellan CM, Clark JS (2008) Understanding movement data and movement processes: current and emerging directions. Ecol Lett 11:1338–1350

    Article  PubMed  Google Scholar 

  • Schiegg K, Walters JR, Priddy JA (2005) Testing a spatially explicit, individual-based model of red-cockaded woodpecker population dynamics. Ecol Appl 15:1495–1503

    Article  Google Scholar 

  • Şekercioğlu CH, Daily GC, Ehrlich PR (2004) Ecosystem consequences of bird declines. Proc Natl Acad Sci USA 101:18042–18047

    Article  PubMed  CAS  Google Scholar 

  • Shultz S, Bradbury RB, Evans KL, Gregory RD, Blackburn TM (2005) Brain size and resource specialization predict long-term population trends in British birds. Proc R Soc B Biol Sci 272:2305–2311

    Article  Google Scholar 

  • Simberloff D (2004) Community ecology: is it time to move on? Am Nat 163:787–799

    Article  PubMed  Google Scholar 

  • Smart SL, Stillman RA, Norris KJ (2008) Measuring the functional responses of farmland birds: an example for a declining seed-feeding bunting. J Anim Ecol 77:687–695

    Article  PubMed  Google Scholar 

  • Snäll T, Kindvall O, Nilsson J, Pärt T (2011) Evaluating citizen-based presence data for bird monitoring. Biol Conserv 144:804–810

    Article  Google Scholar 

  • Starfield AM (1997) A pragmatic approach to modeling for wildlife management. J Wildl Manag 61:261–270

    Article  Google Scholar 

  • Stephens PA, Frey-Roos F, Arnold W, Sutherland WJ (2002) Model complexity and population predictions. The alpine marmot as a case study. J Anim Ecol 71:343–361

    Article  Google Scholar 

  • Stephens PA, Freckleton RP, Watkinson AR, Sutherland WJ (2003) Predicting the response of farmland bird populations to changing food supplies. J Appl Ecol 40:970–983

    Article  Google Scholar 

  • Stillman RA, Goss-Custard JD (2002) Seasonal changes in the response of oystercatchers Haematopus ostralegus to human disturbance. J Avian Biol 33:358–365

    Article  Google Scholar 

  • Stillman RA, Goss-Custard JD (2010) Individual-based ecology of coastal birds. Biol Rev 85:413–434

    Article  PubMed  Google Scholar 

  • Stillman RA, Simmons VL (2006) Predicting the functional response of a farmland bird. Funct Ecol 20:723–730

    Article  Google Scholar 

  • Stillman RA, Goss-Custard JD, West AD, Durell SEALeVdit, Caldow RWG, Mcgrorty S, Clarke RT (2000) Predicting mortality in novel environments: tests and sensitivity of a behaviour-based model. J Appl Ecol 37:564–588

    Article  Google Scholar 

  • Stillman RA, Goss-Custard JD, West AD, Durell SEALeVdit, Mcgrorty S, Caldow RWG, Norris KJ (2001) Predicting shorebird mortality and population size under different regimes of shellfishery management. J Appl Ecol 38:857–868

    Article  Google Scholar 

  • Sullivan MS, Jones MJ, Lee DC, Marsden SJ, Fielding AH, Young EV (2006) A comparison of predictive methods in extinction risk studies: contrasts and decision trees. Biodivers Conserv 15:1977–1991

    Article  Google Scholar 

  • Sutherland WJ (1996) From individual behaviour to population ecology. Oxford University Press, Oxford

    Google Scholar 

  • Sutherland WJ (1998) The importance of behavioural studies in conservation biology. Anim Behav 56:801–809

    Article  PubMed  Google Scholar 

  • Sutherland WJ (2006) Predicting the ecological consequences of environmental change: a review of the methods. J Appl Ecol 43:599–616

    Article  Google Scholar 

  • Sutherland WJ, Allport GA (1994) A spatial depletion model of the interaction between bean geese and wigeon with the consequences for habitat management. J Anim Ecol 63:51–59

    Article  Google Scholar 

  • Sutherland WJ, Anderson CW (1993) Predicting the distribution of individuals and the consequences of habitat loss: the role of prey depletion. J Theor Biol 160:223–230

    Article  Google Scholar 

  • Sutherland WJ, Dolman PM (1994) Combining behaviour and population dynamics with applications for predicting consequences of habitat loss. Proc R Soc B Biol Sci 255:133–138

    Article  CAS  Google Scholar 

  • Sutherland WJ, Newton I, Green R (2004) Bird ecology and conservation: a handbook of techniques. Oxford University Press, Oxford

    Book  Google Scholar 

  • Svenning J-C, Skov F (2007) Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecol Lett 10:453–460

    Article  PubMed  Google Scholar 

  • ter Braak CJF, van Strien AJ, Meijer R, Verstrael TJ (1994) Analysis of monitoring data with many missing values: which method? In: Hagemeijer EJM, Verstrael TJ (eds) Bird Numbers 1992. Distribution, monitoring and ecological aspects. Proceedings of the 12th International Conference of IBCC and EOAC, Noordwijkerhout, The Netherlands. Statistics Netherlands, Voorburg/Heerlen; SOVON, Beek-Ubbergen, pp 663–673

  • Thogmartin WE, Sauer JR, Knutson MG (2004) A Hierarchical spatial model of avian abundance with application to Cerulean warblers. Ecol Appl 14:1766–1779

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN (2004) Extinction risk from climate change. Nature 427:145–148

    Article  PubMed  CAS  Google Scholar 

  • Triplet P, Stillman RA, Goss-Custard JD (1999) Prey abundance and the strength of interference in a foraging shorebird. J Anim Ecol 68:254–265

    Article  Google Scholar 

  • Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Evol Syst 20:171–197

    Article  Google Scholar 

  • UNEP (United Nations Environment Programme) (2002) Report on the sixth meeting of the conference of the parties to the convention on biological diversity (UNEP/CBD/COP/20/Part 2) strategic plan decision VI/26 in CBD. UNEP, Nairobi

    Google Scholar 

  • Uniyal SK (2011) Prioritizing taxonomists. Science 332:536–537

    Article  PubMed  CAS  Google Scholar 

  • Urban DL (2005) Modeling ecological processes across scales. Ecology 86:1996–2006

    Article  Google Scholar 

  • Van Dyck H, Van Strien AJ, Maes D, Van Swaay CAM (2009) Declines in common, widespread butterflies in a landscape under intense human use. Conserv Biol 23:957–965

    Article  PubMed  Google Scholar 

  • Van Nes EH, Scheffer M (2005) A strategy to improve the contribution of complex simulation models to ecological theory. Ecol Model 185:153–164

    Article  Google Scholar 

  • Van Oijen M, Rougier J, Smith R (2005) Bayesian calibration of process-based forest models: bridging the gap between models and data. Tree Physiol 25:915–927

    Article  PubMed  Google Scholar 

  • Van Strien AJ, Pannekoek J, Gibbons DW (2001) Indexing European bird population trends using results of national monitoring schemes: a trial of a new method. Bird Study 48:200–213

    Article  Google Scholar 

  • Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 85:183–206

    Article  PubMed  Google Scholar 

  • Vickery JA, Sutherland WJ, Watkinson AR, Lane SJ, Rowcliffe JM (1995) Habitat switching by dark-bellied brent geese Branta b. bernicla (L.) in relation to food depletion. Oecologia 103:499–508

    Article  Google Scholar 

  • Waite TA, Campbell LG, Chhangani AK, Robbins P (2007) La Niña’s signature: synchronous decline of the mammal community in a ‘protected’ area in India. Divers Distrib 13:752–760

    Article  Google Scholar 

  • Weiner J (1995) On the practice of ecology. J Ecol 83:153–158

    Article  Google Scholar 

  • West AD, Goss-Custard JD, Stillman RA, Caldow RWG, Durell SEALeVdit, McGrorty S (2002) Predicting the impacts of disturbance on shorebird mortality using a behaviour-based model. Biol Conserv 106:319–328

    Article  Google Scholar 

  • Whittingham MJ, Krebs JR, Swetnam RD, Vickery JA, Wilson JD, Freckleton RP (2007) Sould conservation strategies consider spatial generality? Farmland birds show regional not national patterns of habitat association. Ecol Lett 10:25–35

    Article  PubMed  Google Scholar 

  • Wiegand T, Jeltsch F, Hanski I, Grimm V (2003) Using pattern-oriented modeling for revealing hidden information: a key for reconciling ecological theory and application. Oikos 100:209–222

    Article  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

    Article  Google Scholar 

  • Wiens JJ (2004) Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58:193–197

    PubMed  Google Scholar 

  • Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology and species richness. Trends Ecol Evol 19:639–644

    Article  PubMed  Google Scholar 

  • Wiens JA, Stenseth NC, Vanhorne B, Ims RA (1993) Ecological mechanisms and landscape ecology. Oikos 66:369–380

    Article  Google Scholar 

  • Wiens JA, Stralberg D, Jongsomjit D, Howell CA, Snyder MA (2009) Niches, models, and climate change: assessing the assumptions and uncertainties. Proc Natl Acad Sci USA 106:19729–19736

    Article  PubMed  CAS  Google Scholar 

  • Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Davies TJ, Grytnes JA, Harrison SP, Hawkins BA, Holt RD, McCain CM, Stephens PR (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324

    Article  PubMed  Google Scholar 

  • Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst 34:273–309

    Article  Google Scholar 

  • Wu J, Loucks OL (1995) From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q Rev Biol 70:439–466

    Article  Google Scholar 

  • Yamaura Y, Amano T, Kusumoto Y, Nagata H, Okabe K (2011) Climate and topography drives macroscale biodiversity through land-use change in a human-dominated world. Oikos 120:427–451

    Article  Google Scholar 

Download references

Acknowledgments

Given the large number of people who have offered support, I have chosen not to give specific names here to avoid a disaster where I forget to name someone very important! Instead I would like to express my sincere appreciation for all the help and kindness I have received from everyone who has supported my work. This review is based on works funded by Grant-in-Aid for Young Scientist (B) (19770021, 21710246) of the Japan Society for the Promotion of Science (JSPS). T.A. is currently supported by the JSPS Postdoctoral Fellowships for Research Abroad. I would also like to thank S. Sugasawa and Y. Yamaura for comments on an earlier draft and two anonymous referees who greatly helped to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Amano.

Additional information

Tatsuya Amano is the recipient of the 15th Denzaburo Miyadi Award.

About this article

Cite this article

Amano, T. Unravelling the dynamics of organisms in a changing world using ecological modelling. Ecol Res 27, 495–507 (2012). https://doi.org/10.1007/s11284-012-0928-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-012-0928-6

Keywords

Navigation