Skip to main content
Log in

‘Green tides’ are overwhelming the coastline of our blue planet: taking the world’s largest example

  • Review
  • Published:
Ecological Research

Abstract

A broad spectrum of events that come under the category of green tide are recognized world-wide as a response to elevated levels of seawater nutrients in coastal areas. Green tides involve a wide diversity of sites, macroalgal species, consequences, and possible causes. Here we review the effect of natural and man-induced environmental fluctuations on the frequency and apparent spread of green tides. This article highlights the need for interdisciplinary research aimed at shedding light on the basic mechanisms governing the occurrence and succession of green algae in coastal seas. This will result in more effective management and mitigation of the effects of green tides, thus safeguarding the intrinsic and commercial value of coastal marine ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson RJ, Monteiro PMS, Levitt GJ (1996) The effect of localised eutrophication on competition between Ulva lactuca (Ulvaceae, Chlorophyta) and a commercial resource of Gracilaria verrucosa (Gracilariaceae, Rhodophyta). Hydrobiologia 326–327:291–296

    Article  Google Scholar 

  • Auby I, Manaud F, Maurer D, Trut G (1994) Etude de la prolifération des algues vertes dans le Bassin d’Arcachon. Rapport SIBA

  • Blomster J, Baeck S, Fewer DP, Kiirikki M, Lehvo A, Maggs CA, Stanhope MJ (2002) Novel morphology in Enteromorpha (Ulvophyceae) forming green tides. Am J Bot 89:1756–1763

    Article  Google Scholar 

  • Bolam SG, Fernandez TF, Read P, Raffaelli D (2000) Effects of macroalgal mats on intertidal sandflats: an experimental study. J Exp Mar Biol Ecol 249(1):123–137

    Article  PubMed  Google Scholar 

  • Bonsdorff E, Blomqvist EM, Mattila J, Norkko A (1997) Coastal eutrophication: causes, consequences and perspectives in the archipelago areas of the Northern Baltic Sea. Estuar Coast Shelf Sci 44:63–72

    Article  Google Scholar 

  • Briand X, Morand P (1997) Anaerobic digestion of Ulva sp.1. Relationship between Ulva composition and methanisation. J Appl Phycol 9:511–524

    CAS  Google Scholar 

  • Bushaw-Newton KL, Sellner KG (1999) Harmful algal blooms. In: NOAA’s State of the Coast Report. National Oceanic and Atmospheric Administration, Silver Spring, MD

  • Charlier RH, Mor P, Finkl CW, Thys A (2007) Green tides on the Brittany coasts. Environ Res Eng Manage 3:52–59

    Google Scholar 

  • den Hartog C (1994) Suffocation of a littoral Zostera bed by Enteromorpha radiata. Aquat Bot 47:21–28

    Article  Google Scholar 

  • Ding L, Fei X, Lu Q, Deng Y, Lian S (2009) The possibility analysis of habitats, origin and reappearance of bloom green alga (Enteromorpha prolifera) on inshore of western Yellow Sea. Chin J Oceanol Limnol 27:421–424

    Article  Google Scholar 

  • Fletcher RL (1996a) The British Isles. In: Schramm W, Nienhuis PH (eds) Marine benthic vegetation: recent changes, the effects of eutrophication. Springer, Berlin, pp 150–223

    Google Scholar 

  • Fletcher RL (1996b) The occurrence of ‘green tides’ a review. In: Schramm W, Nienhuis PH (eds) Marine benthic vegetation: recent changes and the effects of eutrophication. Springer, Berlin, pp 7–43

    Google Scholar 

  • Fong P, Zedler JB, Donohoe RM (1993) Nitrogen vs phosphorus limitation of algal biomass in shallow coastal lagoons. Limnol Oceanogr 38:906–923

    Article  Google Scholar 

  • Frankenstein G (2000) Blooms of ulvoids in puget sound: Puget Sound water quality action team. Office of the Governor, Washington

    Google Scholar 

  • Fu G, Yao J, Liu F, Liu J, Wang X, Fu W, Li D, Zhou M, Sun S, Duan D (2008) Effect of temperature and irradiance on the growth and reproduction of Enteromorpha prolifera J Ag (Chlorophycophyta, Chlorophyceae). Chin J Ocean Limnol 4:357–362

    Article  Google Scholar 

  • Gamenick I, Jahn A, Vopel K, Giere O (1996) Hypoxia and sulphide as structuring factors in a macrozoobenthic community on the Baltic Seashore: colonisation studies and tolerance studies. Mar Ecol Prog Ser 144:75–85

    Article  Google Scholar 

  • Gao S, Chen X, Yi Q, Wang G, Pan G, Lin A, Peng G (2010) A strategy for the proliferation of Ulva prolifera, main causative species of green tides, with formation of sporangia by fragmentation. PloS ONE 5(1):e8571. doi:10.1371/journal.pone.0008571

  • Guiry MD, Guiry GM (2007) Algae Base version 4.2. Worldwide electronic publication: National University of Ireland, Galway. Available at: http://www.algaebase.org (Accessed 2 May 2007)

  • Harder T, Dobretsov S, Qian PY (2004) Waterbourne polar macromolecules act as algal antifoulants in the seaweed Ulva reticulate. Mar Ecol Prog Ser 274:133–141

    Article  CAS  Google Scholar 

  • Hayden HS, Blomster J, Maggs CA, Silva PC, Stanhope MJ, Waaland JR (2003) Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. Eur J Phycol 38:277–294

    Article  Google Scholar 

  • Hull S (1988) The growth of macroalgal mats on the Ythan estuary, with respect to their effects on invertebrate abundance. PhD Thesis, Aberdeen University

  • Jeffrey DW, Madden B, Rafferty B, Dwyer R, Wilson J, Allott N (1992) Dublin Bay-water quality management plan. Technical Report 7, Algal growths and foreshore quality. Environmental Research Unit, Dublin

  • Jiang P, Wang JF, Cui YL, Li YX, Lin HZ, Qin S (2008) Molecular phylogenetic analysis of attached Ulvaceae species and free-floating Enteromorpha from Qingdao coasts in 2007. Chin J Oceanol Limnol 26:276–279

    Article  CAS  Google Scholar 

  • Lappalainen A, Pönni J (2000) Eutrophication and recreational fishing on the Finnish coast of the Gulf of Finland: a mail survey. Fish Manag Ecol 7:323–335

    Google Scholar 

  • Lavery PS, Lukatelich RJ, McComb AJ (1991) Changes in biomass and species composition of macroalgae in a eutrophic estuary. Estuar Coast Shelf Sci 33:122

    Article  Google Scholar 

  • Leliaert F, Malta EJ, Engelen AH, Mineur F, De Clerck O (2008) Qingdao algal bloom culprit identified. Mar Pollut Bull 56:15–16

    Google Scholar 

  • Leliaert F, Zhang X, Ye N, Malta E, Engelen AH, Mineur F, Verbruggen H, De Clerck O (2009) Identity of the Qingdao algal bloom. Phycol Res 57:147–151

    Article  Google Scholar 

  • Li D, Zhao J, Chen L, Zhang X, Wang Q, Wang H, Ye N (2010) Evaluation of the pyrolytic and kinetic characteristics of Enteromorpha prolifera as a source of renewable bio-fuel from the Yellow Sea of China. Chem Eng Res Des 88:647–652

    Article  CAS  Google Scholar 

  • Liang Z, Lin X, Ma M, Zhang J, Yan X, Liu T (2008) A preliminary study of the Enteromorpha prolifera drift gathering causing the green tide phenomenon (in Chinese with English abstract). Period Ocean Univ China 38:601–604

    Google Scholar 

  • Liang CW, Zhang XW, Su F, Ye NH (2010) Analysis of diversity of Ulva in Qingdao after the largest macroalgal bloom (in Chinese with English abstract). Mar Sci Bull 29:540–545

    CAS  Google Scholar 

  • Lin A, Shen S, Wang J, Yan B (2008) Reproduction diversity of Enteromorpha prolifera. J Integr Plant Biol 50:622–629

    Article  PubMed  Google Scholar 

  • Liu DY, Keesing JK, Xing QG, Shi P (2009) Worlds largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar Pollut Bull 58(6):888–895

    Article  PubMed  CAS  Google Scholar 

  • Liu DY, Keesing JK, Dong Z, Zhen Y, Di B, Shi Y, Fearns P, Shi P (2010) Recurrence of the world’s largest green-tide in 2009 in Yellow Sea, China: Porphyra yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms. Mar Pollut Bull 60(9):1423–1432

    Article  PubMed  CAS  Google Scholar 

  • Lotze HK, Schramm W, Schories D, Worm B (1999) Control of macroalgal blooms at early developmental stages: Pilayella littoralis versus Enteromorpha spp. Oecologia 119:46–54

    Article  Google Scholar 

  • Lyngby JE, Mortensen SM (1994) Assessment of nutrient availability and limitation using macroalgae. J Aquat Ecosyst Health 3:27–34

    Article  Google Scholar 

  • Ménesguen A, Piriou JY (1995) Nitrogen loadings and macroalgal (Ulva sp) massaccumulation in Brittany (France). Ophelia 42:227–237

    Google Scholar 

  • Montgomery HAC, Soulsby PG, Hart IC, Wright SL (1985) Investigation of a eutrophic tidal nbasin. Part 2. Nutrients and environmental aspects. Mar Environ Res 15:285–302

    Article  CAS  Google Scholar 

  • Morand P, Briand X (1996) Excessive growth of macroalgae: a symptom of environmental disturbance. Bot Mar 39:491–516

    Article  CAS  Google Scholar 

  • Morand P, Briand X (1999) Anaerobic digestion of Ulva sp. 2. Study of Ulva degradation and methanisation of liquefaction juices. J Appl Phycol 11:165–177

    Article  Google Scholar 

  • Morand P, Merceron M (2004) Coastal eutrophication and excessive growth of macroalgae. In: Pandalai SG (ed) Recent research developments in environmental biology, vol 1(2). Research Signpost, Trivandrum, Kerala, India, pp 395–449

  • Morand P, Merceron M (2005) Macroalgal population and sustainability. J Coast Res 21:1009–1020

    Article  Google Scholar 

  • Morand P, Carpentier B, Charlier RH, Mazé J, Orlandini M, Plunkett BA, de Waart J (1991) Bioconversion of seaweeds. In: Guiry MD, Blunden G (eds) Seaweed resources in Europe: uses and potential. Wiley, Chichester, pp 95–148

    Google Scholar 

  • Morand P, Briand X, Charlier RH (2006) Anaerobic digestion of Ulva sp. 3. Liquefaction juices extraction by pressing and technico-economic budget. J Appl Phycol 18:741–755

    Article  Google Scholar 

  • Munda IM (1993) Impact of pollution on benthic marine algae in the Northern Adriatic. Int J Environ Stud 43:185–199

    Article  CAS  Google Scholar 

  • Nelson TA, Nelson AV, Tjoelker M (2003) Seasonal patterns in ulvoid algal biomass, productivity, and key environmental factors in the Northeast Pacific. Bot Mar 46:263–327

    Article  Google Scholar 

  • Norkko J, Bonsdorff E, Norkko A (2000) Drifting algal mats as an alternative habitat for benthic invertebrates: species specific responses to a transient resource. J Exp Mar Biol Ecol 248:79–104

    Article  PubMed  Google Scholar 

  • Pang SJ, Liu F, Shan TF, Xu N, Zhang ZH, Gao SQ, Chopin T, Sun S (2010) Tracking the algal origin of the Ulva bloom in the Yellow Sea by a combination of molecular, morphological and physiological analyses. Mar Environ Res 69:207–215

    Article  PubMed  CAS  Google Scholar 

  • Pedersen MF (1995) Nitrogen limitation of photosynthesis and growth: comparison across aquatic plant communities in a Danish estuary (Roskilde Fjord). Ophelia 41:261–272

    Google Scholar 

  • Pedersen MF, Borum J (1997) Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptake. Mar Ecol Prog Ser 161:155–163

    Article  Google Scholar 

  • Pihl L, Magnusson G, Isaksson I, Wallentinus I (1996) Distribution and growth dynamics of ephemeral macroalgae in shallow bays on the Swedish West coast. J Sea Res 35:169–180

    Article  Google Scholar 

  • Piriou JY, Coïc D, Merceron M (1999) Abattement de l’azote par le marais côtier de Kervigen et potentiel breton. In: Merceron M (ed) Pollutions diffuses: du bassin versant au littoral. Saint-Brieuc, Ploufragan, 23–24 septembre 1999. Plouzané, France: IFREMER. Actes de colloques 24:275–287

  • Pitkänen H, Kondratyev S, Lääne A, Gran V, Kauppila P, Loigu E, Markovets I, Pachel K, Rumyantsev V (1997) Pollution load on the Gulf of Finland from Estonia, Finland and Russia in 1985–1995. Summary report of the working group. In: Proceedings of the Final Seminar of the Gulf of Finland Year 1996, Environmental Institute, Helsinki, Finland, pp 9–18

  • Rafaelli DG, Limia J, Hull S, Pont S (1991) Interactions between the amphipod Corophium volutator and macroalgal mats on estuarine mudflats. JMBA (UK) 71:899–908

    Google Scholar 

  • Raffaelli D (2000) Interactions between macroalgal mats and invertebrates on the Ythan estuary. Helgoland Mar Res 54:71–77

    Article  Google Scholar 

  • Raffaelli D, Hull S, Milne H (1989) Long-term changes in nutrients, weedmats and shore birds in an estuarine system. Cah Biol Mar 30:259–270

    Google Scholar 

  • Raffaelli DG, Raven JA, Poole LJ (1998) Ecological impact of green macroalgal blooms. Oceanogr Mar Biol Annu Rev 36:97–125

    Google Scholar 

  • Runca E, Bernstein A, Postma L, Di Silvio G (1996) Control of macroalgae blooms in the Lagoon of Venice. Ocean Coast Manag 30:235–257

    Article  Google Scholar 

  • Scanlan CM, Foden J, Wells E, Best MA (2007) The monitoring of opportunistic macroalgal blooms for the water framework directive. Mar Poll Bull 55:162–171

    Article  CAS  Google Scholar 

  • Schramm W (1991) Seaweeds for waste water treatment and recycling of nutrients. Bioconversion of seaweeds. In: Guiry MD, Blunden G (eds) Seaweed resources in Europe: uses and potential. Wiley, Chichester, pp 149–168

    Google Scholar 

  • Schramm W, Nienhuis PH (1996) Introduction. In: Nienhuis PH, Schramm W (eds) Marine benthic vegetation recent changes and the effects of eutrophication. Springer, Berlin

    Google Scholar 

  • Sfriso A, Pavoni B, Marcomini A, Orio AA (1988) Annual variations of nutrients in the Lagoon of Venice. Mar Pollut Bull 19:54–60

    Article  CAS  Google Scholar 

  • Sfriso A, Marcomini A, Pavoni B, Orio AA (1992) Macroalgae, nutrient cycles, and pollutants in the Lagoon of Venice. Estuaries 15:517–528

    Article  CAS  Google Scholar 

  • Sun S, Wang F, Li C, Qin S, Zhou M, Ding L, Pang S, Duan D, Wang G, Yin B, Yu R, Jiang P, Liu Z, Zhang G, Fei X, Zhou M (2008) Emerging challenges: massive green algae blooms in the Yellow Sea. Available from Nature Precedings http://hdl.handle.net/10101/npre.2008.2266.1

  • Taylor R, Fletcher RL, Raven JA (2001) Preliminary studies on the growth of selected ‘green tide’ algae in laboratory culture: effects of irradiance, temperature, salinity and nutrients on growth rate. Bot Mar 44:327–333

    Article  Google Scholar 

  • Thybo-Christensen M, Rasmussen MB, Blackbum TH (1993) Nutrient fluxes and growth of Cladophora sericea in a shallow Danish bay. Mar Ecol Prog Ser 100:273–281

    Article  Google Scholar 

  • Valiela I, McClelland J, Hauxwell J, Behr PJ, Hersh D, Foreman K (1997) Macroalgal blooms in shallowe stuaries: controls and ecophysiological and ecosystem consequences. Limnol Oceanogr 42:1105–1118

    Article  Google Scholar 

  • Viaroli P, Naldi M, Bondavalli C, Bencivelli S (1996) Growth of the seaweed Ulva rigida C. Agardh in relation to biomass densities, internal nutrient pools and external nutrient supply in the Sacca di Goro lagoon (Northern Italy). Hydrobiologia 329:93–103

    Article  CAS  Google Scholar 

  • Villares R, Puente X, Carballeira A (1999) Nitrogen and phosphorus in Ulva sp in the Galician Rias Bajas (northwest Spain): seasonal fluctuations and influence on growth. Bol Inst Esp Oceanogr 15:337–341

    Google Scholar 

  • Virnstein RW, Carbonara PA (1985) Seasonal abundance and distribution of drift algae and seagrasses in the mid-Indian River lagoon, Florida. Aquat Bot 23:67–82

    Article  Google Scholar 

  • Wang J, Jiang P, Cui Y, Li N, Wang M, Lin H, He P, Qin S (2010) Molecular analysis of green-tide-forming macroalgae in the Yellow Sea. Aquat Bot 93:25–31

    Article  CAS  Google Scholar 

  • Wilce RT, Schneider CW, Quinlan AV, Bosch KV (1982) The life history and morphology of free-living Pilayella littoralis (L.) Kjellm. (Ectocarpaceae, Ectocarpales) in Nahant Bay, Massachusetts. Phycologia 21:336–354

    Article  Google Scholar 

  • Worm B, Heike K, Sommer U (2001) Algal propagules banks modify competition, consumer and resource control on Baltic rocky shores. Oecologia 28:281–293

    Article  Google Scholar 

  • Ye NH, Zhang XW, Mao YZ, Zhuang ZM, Wang QY (2008a) Life history of Enteromorpha prolifera under laboratory conditions (in Chinese with English abstract). J Fish Sci China 15:853–859

    Google Scholar 

  • Ye NH, Zhuang ZM, Jin XS, Wang QY, Zhang XW, Li DM, Wang HX, Mao YZ, Jiang ZJ, Li B, Xue ZX (2008b) China is on the track tackling Enteromorpha spp. forming green tide. Available from Nature Precedings http://hdl.handle.net/10101/npre.2008.2352.1

  • Ye NH, Li DM, Chen L,Zhang XW, Xu D (2010) Comparative studies of the pyrolytic and kinetic characteristics of maize straw and the seaweed Ulva pertusa. PLoS ONE 5(9):e12641. doi:10.1371/journal.pone.001264

  • Zhang X, Mao Y, Zhuang Z, Liu S, Wang Q, Ye N (2008) Morphological characteristics and molecular phylogenetic analysis of green tide Enteromorpha sp. occurred in the Yellow Sea (in Chinese with English abstract). J Fish Sci China 15:822–829

    CAS  Google Scholar 

  • Zhang X, Wang H, Mao Y, Liang C, Zhuang Z, Wang Q, Ye N (2010) Somatic cells serve as a potential propagule bank of Enteromorpha prolifera forming a green tide in the Yellow Sea, China. J Appl Phycol 22:173–180

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (40706050 and 31000135), the National Science and Technology Pillar Program (2008BAC49B04), National Special Fund for Transgenic Project (2009ZX08009-019B), Natural Science Foundation of Shandong Province (2009ZRA02075), Qingdao Municipal Science and Technology Plan Project (09-2-5-8-hy) and the Hi-TechResearch and Development Program (863) of China (2009AA10Z106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nai-hao Ye.

About this article

Cite this article

Ye, Nh., Zhang, Xw., Mao, Yz. et al. ‘Green tides’ are overwhelming the coastline of our blue planet: taking the world’s largest example. Ecol Res 26, 477–485 (2011). https://doi.org/10.1007/s11284-011-0821-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-011-0821-8

Keywords

Navigation