Skip to main content
Log in

Accelerating the Restoration of Vegetation in a Southern California Salt Marsh

  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Re-establishing plant cover is essential for restoring ecosystem functions, but revegetation can be difficult in severe sites, such as salt marshes that experience hypersalinity and sedimentation. We tested three treatments (adding tidal creeks, planting seedlings in tight clusters, and rototilling kelp compost into the soil) in a site that was excavated to reinstate tidal flows and restore salt marsh. The magnitude of responses was the reverse of expectations, with tidal creeks having the least effect and kelp compost the most. On the marsh plain, kelp compost significantly increased soil organic matter (by 17% at 0–5 cm; p = 0.026 and 11.5% at 5–20 cm; p = 0.083), total Kjeldahl nitrogen (45% at 5–8 cm; p < 0.001) and inorganic nitrogen (35% at 5–8 cm; p < 0.006), and decreased bulk density (16% at 0–5 cm; p < 0.001 and 21% at 5–8 cm depth; p < 0.001) compared to control plots. Survivorship of kelp compost treated plantings increased, along with growth (> 50% increase in a growth index at 20 months after planting; p < 0.0001). In Spartina foliosa plots, kelp compost did not affect soil organic matter, but plants were taller (by ~11 cm; p = 0.003) and denser (47% more stems; p = 0.003). Planting seedlings 10-cm apart in tight clusters on the marsh plain increased survivorship by 18% (compared to 90-cm apart in loose clusters; p = 0.053), but not growth. Tidal creek networks increased survivorship of Batis maritima and Jaumea carnosa by ≥20% (p = 0.060 and 0.077, respectively). Kelp compost had a strong, positive influence on vegetation establishment by ameliorating some of the abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Kelp Corporation 2003. http://organa.cc/KEL-FIBER%20232.htmPO Box 370178, San Diego, California, 92137, USA.

  • P. Adam (1990) Salt Marsh Ecology Cambridge University Press Cambridge, UK

    Google Scholar 

  • APHA (American Public Health Association), AWWA (American Water Works Association), and Water Environment Federation 1995. Standard Methods for the Examination of Water and Wastewater.19th edn. Washington DC, USA.

  • J.P. Bakker P. Esseline K.S. Dijkeme W.E. Duin Particlevan D.J. Jong Particlede (2002) ArticleTitleRestoration of salt marshes in the Netherlands Hydrobiologia 478 29–51 Occurrence Handle10.1023/A:1021066311728

    Article  Google Scholar 

  • M.D. Bertness S.D. Hacker (1994) ArticleTitlePhysical stress and positive associations among marsh plants Am. Nat. 144 363–372 Occurrence Handle10.1086/285681

    Article  Google Scholar 

  • M.D. Bertness S.W. Shumway (1993) ArticleTitleCompetition and facilitation in marsh plants Am. Nat. 142 718–724 Occurrence Handle10.1086/285567 Occurrence Handle19425967 Occurrence Handle1:STN:280:DC%2BD1Mzjt1GnsQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  • B.P. Bledsoe T.H. Shear (2000) ArticleTitleVegetation along hydrologic and edaphic gradients in a North Carolina coastal plain creek bottom and implications for restoration Wetlands 20 126–147

    Google Scholar 

  • B. Boeken M. Shachak (1994) ArticleTitleDesert plant communities in human-made patches – implications for management Ecol. Appl. 4 702–716

    Google Scholar 

  • K.E. Boyer J.B. Zedler (1998) ArticleTitleEffects of nitrogen additions on the vertical structure of a constructed cordgrass marsh Ecol. Appl. 8 692–705

    Google Scholar 

  • P.M. Bradley J.T. Morris (1992) ArticleTitleEffect of salinity on the critical nitrogen concentration of Spartina-alterniflora Loisel Aquat. Bot. 43 149–161 Occurrence Handle10.1016/0304-3770(92)90040-P

    Article  Google Scholar 

  • Brady N.C. and Weil R.R. 1996. The nature and properties of soils. 11th edition. Prentice Hall, Upper Saddle River, NJ.

  • D.M. Burdick I.A. Mendelssohn K.W. McKee (1989) ArticleTitleLive standing crop and metabolism of the marsh grass Spartina Patnes as related to edaphic factors in a brackishmixed marsh community in houisana Estuaries 12 195–204 Occurrence Handle10.2307/1351824

    Article  Google Scholar 

  • J.C. Callaway (2001) Hydrology and substrate J.B. Zedler (Eds) Handbook for Restoring Tidal Wetlands CRC Press Boca Raton, Florida, USA 89–112

    Google Scholar 

  • J.C. Callaway G.S. Sullivan J.B. Zedler (2003) ArticleTitleSpecies richness and wetland function Ecol. Appl. 13 1626–1639

    Google Scholar 

  • J.D. Covin J.B. Zedler (1988) ArticleTitleNitrogen effects on Spartina foliosa and Salicornia virginica in the salt marsh at Tijuana Estuary, California Wetlands 8 51–65 Occurrence Handle10.1007/BF03160808

    Article  Google Scholar 

  • S. Crooks J. Schutten G.D. Sheern K. Pye A.J. Davy (2002) ArticleTitleDrainage and Elevation as Factors in the Restoration of Salt Marsh in Britain Restor. Ecol. 10 591–602 Occurrence Handle10.1046/j.1526-100X.2002.t01-1-02036.x

    Article  Google Scholar 

  • C. Craft J. Reader J.N. Sacco S.W. Broome (1999) ArticleTitleTwenty-five years of ecosystem development of constructed Spartina alterniflora (Loisel) marshes Ecol. Appl. 9 1405–1419

    Google Scholar 

  • InstitutionalAuthorNameEntrix, Pacific Estuarine Research Laboratory, and Philip Williams & Associates Ltd. (1991) Tijuana Estuary Tidal Restoration Program. Vol. I–III Draft Environmental Impact Report and Environmental Impact Statement California Coastal Conservancy Oakland, CA, USA

    Google Scholar 

  • R.H. Eertman B.A. Kornman E. Stikvoort H. Verbeek (2002) ArticleTitleRestoration of the Sieperda Tidal Marsh in the Scheldt Estuary Netherlands 10 IssueID3 438–449

    Google Scholar 

  • B.N. Fogel C.M. Crain M.D. Bertness (2004) ArticleTitleCommunity level engineering effects of Triglochlin maritima (seaside arrowgrass) in a salt marsh in northern New EnglandUSA J. Ecol. 92 589–597 Occurrence Handle10.1111/j.0022-0477.2004.00903.x

    Article  Google Scholar 

  • J. Haltiner J.B. Zedler K.E. Boyer G.D. Williams J.C. Callaway (1997) ArticleTitleInfluence of physical processes on the design, functioning and evolution of restored tidal wetlands Wetlands Ecol. Manage. 4 73–91 Occurrence Handle10.1007/BF01876230

    Article  Google Scholar 

  • I.T. Handa R.L. Jefferies (2000) ArticleTitleAssisted revegetation trials in degraded salt-marshes J. Appl. Ecol. 37 944–958 Occurrence Handle10.1046/j.1365-2664.2000.00531.x

    Article  Google Scholar 

  • G. Keer J.B. Zedler (2002) ArticleTitleSalt marsh canopy architecture differs with species richness and species identity Ecol. Appl. 12 456–473

    Google Scholar 

  • J. Kolasa S. Pickett (1991) Ecological Heterogeneity. Ecological Studies NumberInSeriesVol. 86. Springer-Verlag New York, NY, USA

    Google Scholar 

  • R.M. Langis M. Zalejko J.B. Zedler (1991) ArticleTitleNitrogen assessments in a constructed and a natural salt marsh of San Diego Bay (California, USA) Ecol. Appl. 1 40–51

    Google Scholar 

  • R. Lindig-Cisneros J.B. Zedler (2002) ArticleTitleHalophyte recruitment in a salt marsh restoration site Estuaries 25 1174–1183 Occurrence Handle10.1007/BF02692214

    Article  Google Scholar 

  • J.A. MacMahon (1997) Ecological Restoration G.K. Meffe C.R. Carrol (Eds) Principles of Conservation Biology Sinauer Associates, Inc Sunderland, Massachusetts, USA 479–511

    Google Scholar 

  • I. Mendelssohn N.L. Kuhn (2003) ArticleTitleSediment subsidy: effects on soil-plant responses in a rapidly submerging coastal marsh Ecol. Eng. 21 115–128 Occurrence Handle10.1016/j.ecoleng.2003.09.006

    Article  Google Scholar 

  • W.J. Mitsch R.F. Wilson (1996) ArticleTitleImproving the success of wetland creation and restoration with know-how, time and self-design Ecol. Appl. 6 77–83

    Google Scholar 

  • H. Morzaria-Luna J.C. Callaway G. Sullivan J.B. Zedler (2004) ArticleTitleTopographic heterogeneity effects on community patterns in a Californian salt-marsh J. Veg. Sci. 15 523–530

    Google Scholar 

  • InstitutionalAuthorNameNRC (1996) Wetland Characteristics and Boundaries National Academy Press Washington, DC, USA

    Google Scholar 

  • E.O. O’Brien (2003) Starting from scratch: a three factor approach to accelerate vegetation development at a southern California salt marsh restoration site University of Wisconsin-Madison. Gaylord Nelson Institute for Environmental Studies Madison, Wisconsin, USA

    Google Scholar 

  • M.A. Palmer N.L. Poff (1997) ArticleTitleThe influence of environmental heterogeneity on patterns and processes in streams J. N. Am. Benthol. Soc. 16 169–173 Occurrence Handle10.2307/1468249

    Article  Google Scholar 

  • P. Sheridan G. McMahan K. Hammerstrom W. Pulich (1998) ArticleTitleFactors affecting restoration of Halodule wrightii to Galveston bay, Texas Restor. Ecol. 6 144–158 Occurrence Handle10.1111/j.1526-100X.1998.00625.x

    Article  Google Scholar 

  • G. Sullivan G.B. Noe (2001) Coastal wetland plant species of southern California J.B. Zedler (Eds) Handbook for Restoring Tidal Wetlands CRC Press Boca Raton, Florida, USA 369–394

    Google Scholar 

  • S. Trnka J.B. Zedler (2000) ArticleTitleSite conditions, not parental phenotypedetermine the height of Spartina foliosa Estuaries 24 572–582 Occurrence Handle10.2307/1353147

    Article  Google Scholar 

  • G. Vivian-Smith (1997) ArticleTitleMicrotopographic heterogeneity and floristic diversity in experimental wetland communities J. Ecol. 85 71–82

    Google Scholar 

  • G. Vivian-Smith (2001) Developing a framework for restoration J.B. Zedler (Eds) Handbook for Restoring Tidal Wetlands CRC Press Boca Raton, Florida, USA 39–88

    Google Scholar 

  • M.P. Weinstein K.R. Philipp P. Goodwin (2000) Catastrophes, near-catastrophes and the bounds of expectations: Success criteria for macroscale marsh restoration M.P. Weinstein D. Kreeger (Eds) Concepts and Controversies in Tidal Marsh Ecology Kluwer Academic Publishers Dordrecht, The Netherlands 777–804

    Google Scholar 

  • S.G. Whisenant (2002) Terrestrial systems M.R. Perrow A.J. Davy (Eds) Handbook of Ecological Restoration, Vol. 1: Principles of Restoration Cambridge University Press Cambridge, UK 83–105

    Google Scholar 

  • B. Worm T.B.H. Reusch (2000) ArticleTitleDo nutrient availability and plant density limit seagrass colonization in the Baltic Sea? Mar. Ecol.-Prog. Ser. 200 159–166 Occurrence Handle1:CAS:528:DC%2BD3cXmtlCltbs%3D

    CAS  Google Scholar 

  • J.B. Zedler J.C. Callaway J.S. Desmond G. Vivian-Smith G.D. Williams G. Sullivan A.E. Brewster B.K. Bradshaw (1999) ArticleTitleCalifornian salt-marsh vegetation: an improved model of spatial pattern Ecosystems 2 19–35 Occurrence Handle10.1007/s100219900055

    Article  Google Scholar 

  • J.B. Zedler J.C. Callaway G. Sullivan (2001) ArticleTitleDeclining biodiversity: why species matter and how their functions might be restored in Californian tidal marshes Bioscience 51 1005–1017

    Google Scholar 

  • J.B. Zedler (Eds) (2001) Handbook for Restoring Tidal Wetlands CRC Press Boca Raton, Florida, USA

    Google Scholar 

  • J.B. Zedler H. Morzaria-Luna K. Ward (2003) ArticleTitleThe challenge of restoring vegetation on tidal, hypersaline substrates Plant Soil 253 259–273 Occurrence Handle1:CAS:528:DC%2BD3sXltVemsbg%3D Occurrence Handle10.1023/A:1024599203741

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joy B. Zedler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Brien, E.L., Zedler, J.B. Accelerating the Restoration of Vegetation in a Southern California Salt Marsh. Wetlands Ecol Manage 14, 269–286 (2006). https://doi.org/10.1007/s11273-005-1480-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-005-1480-8

Keywords

Navigation