Skip to main content
Log in

Water Leaching of Chelated Pb Complexes from Post-Phytoremediation Biomass

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

There is a pollution risk when disposing of post-remediation biomass from chelate-assisted metal phytoremediation. To assess this risk, we measured water extractable lead (Pb) in Brassica rapa tissues with ICP-MS, determined if chelated Pb was present with HPLC-MS, and identified Pb storage locations using electron microscopy with x-ray microanalysis. Ethylenediaminetetraacetic acid (EDTA) and ethylenediaminedisuccinic acid (EDDS) were used to enhance Pb movement from contaminated soil to above ground B. rapa tissues. With Pb-EDTA, 92 % (+/−5) of Pb was water extractable from dried tissues and complexed as Pb-EDTA. Electron microscopy and x-ray microanalysis showed Pb stored in xylem vessels. After composting of plant tissues, 79 % (+/−2) of Pb was water extractable and complexed as Pb-EDTA. Total plant Pb accumulation was lower from soils amended with EDDS, but only 6.7 % (+/−0.3) of Pb was water extractable from dried tissues and 55 % (+/−25) from wet tissues of plants grown in EDDS-amended soils. Pb-EDDS was detected in tissues but not at quantifiable levels. This work emphasizes the need for proper treatment and disposal of contaminated post-remediation plant tissues, especially when using EDTA. Composting of plant tissues containing Pb-EDTA was shown to significantly reduce waste material volume and slightly reduce the water extractable fraction, but further immobilization of Pb would be necessary to minimize transport risk. Amending Pb-contaminated soils with EDDS can result in plant biomass with a lower potential to leach Pb into groundwater, but the lower Pb accumulation with EDDS would require longer phytoremediation time compared with EDTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91(7), 869–881. doi:10.1016/j.chemosphere.2013.01.075.

    Article  CAS  Google Scholar 

  • Andra, S. S., Datta, R., Sarkar, D., Saminathan, S. K. M., Mullens, C. P., & Bach, S. B. H. (2009). Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry. Environmental Pollution, 157(7), 2173–2183. doi:10.1016/j.envpol.2009.02.014.

    Article  CAS  Google Scholar 

  • Barrutia, O., Garbisu, C., Hernández-Allica, J., García-Plazaola, J. I., & Becerril, J. M. (2010). Differences in EDTA-assisted metal phytoextraction between metallicolous and non-metallicolous accessions of Rumex acetosa L. Environmental Pollution, 158(5), 1710–1715. doi:10.1016/j.envpol.2009.11.027.

    Article  CAS  Google Scholar 

  • Bovenkamp, G. L., Prange, A., Schumacher, W., Ham, K., Smith, A. P., & Hormes, J. (2013). Lead uptake in diverse plant families: a study applying x-ray absorption near edge spectroscopy. Environmental Science & Technology, 47(9), 4375–4382. doi:10.1021/es302408m.

    Article  CAS  Google Scholar 

  • Bucheli-Witschel, M., & Egli, T. (2001). Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiology Reviews, 25(1), 69–106. doi:10.1111/j.1574-6976.2001.tb00572.x.

    Article  CAS  Google Scholar 

  • Chen, K. F., Yeh, T. Y., & Lin, C. F. (2012). Phytoextraction of Cu, Zn, and Pb enhanced by chelators with vetiver (Vetiveria zizanioides): hydroponic and pot experiments. ISRN Ecology, 2012, 1–12. doi:10.5402/2012/729693.

    Article  Google Scholar 

  • Collins, R. N., Onisko, B. C., McLaughlin, M. J., & Merrington, G. (2001). Determination of metal—EDTA complexes in soil solution and plant xylem by ion chromatography-electrospray mass spectrometry. Environmental Science & Technology, 35(12), 2589–2593. doi:10.1021/es001893y.

    Article  CAS  Google Scholar 

  • Ent, A., Baker, A. J. M., Reeves, R. D., Pollard, A. J., & Schat, H. (2012). Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil, 362(1–2), 319–334. doi:10.1007/s11104-012-1287-3.

    Google Scholar 

  • Epstein, A. L., Gussman, C. D., Blaylock, M. J., Yermiyahu, U., Huang, J. W., Kapulnik, Y., et al. (1999). EDTA and Pb-EDTA accumulation in Brassica juncea grown in Pb-amended soil. Plant and Soil, 208, 87–94.

    Article  CAS  Google Scholar 

  • Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of its byproducts. Applied Ecology and Environmental Research, 3(1), 1–18.

    Google Scholar 

  • Hu, N., Luo, Y., Wu, L., & Song, J. (2007). A field lysimeter study of heavy metal movement down the profile of soils with multiple metal pollution during chelate-enhanced phytoremediation. International Journal of Phytoremediation, 9(4), 257–268. doi:10.1080/15226510701473476.

    Article  CAS  Google Scholar 

  • Jarvis, M., & Leung, D. W. (2002). Chelated lead transport in Pinus radiata: an ultrastructural study. Environmental and Experimental Botany, 48(1), 21–32. doi:10.1016/S0098-8472(02)00005-9.

    Article  CAS  Google Scholar 

  • Keller, C., Ludwig, C., Davoli, F., & Wochele, J. (2005). Thermal treatment of metal-enriched biomass produced from heavy metal phytoextraction. Environmental Science & Technology, 39(9), 3359–3367. doi:10.1021/es0484101.

    Article  CAS  Google Scholar 

  • Komárek, M., Tlustoš, P., Száková, J., Chrastný, V., & Ettler, V. (2007). The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils. Chemosphere, 67(4), 640–651. doi:10.1016/j.chemosphere.2006.11.010.

    Article  Google Scholar 

  • Kos, B., & Leštan, D. (2003). Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers. Environmental Science & Technology, 37(3), 624–629. doi:10.1021/es0200793.

    Article  CAS  Google Scholar 

  • Lan, J., Zhang, S., Lin, H., Li, T., Xu, X., Li, Y., et al. (2013). Efficiency of biodegradable EDDS, NTA and APAM on enhancing the phytoextraction of cadmium by Siegesbeckia orientalis L. grown in Cd-contaminated soils. Chemosphere, 91(9), 1362–1367. doi:10.1016/j.chemosphere.2013.01.116.

    Google Scholar 

  • Li, H., Wang, Q., Cui, Y., Dong, Y., & Christie, P. (2005). Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil—a preliminary study. Science of the Total Environment, 339(1–3), 179–187. doi:10.1016/j.scitotenv.2004.07.020.

    Article  CAS  Google Scholar 

  • Lin, C., Liu, J., Liu, L., Zhu, T., Sheng, L., & Wang, D. (2009). Soil amendment application frequency contributes to phytoextraction of lead by sunflower at different nutrient levels. Environmental and Experimental Botany, 65(2–3), 410–416. doi:10.1016/j.envexpbot.2008.12.003.

    Article  CAS  Google Scholar 

  • Liu, W., Zhou, Q., Zhang, Z., Hua, T., & Cai, Z. (2011). Evaluation of cadmium phytoremediation potential in Chinese cabbage cultivars. Journal of Agricultural and Food Chemistry, 59(15), 8324–8330. doi:10.1021/jf201454w.

    Article  CAS  Google Scholar 

  • Luo, C., Shen, Z., & Li, X. (2005). Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere, 59(1), 1–11. doi:10.1016/j.chemosphere.2004.09.100.

    Article  CAS  Google Scholar 

  • Meers, E., Ruttens, A., Hopgood, M. J., Samson, D., & Tack, F. M. G. (2005). Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere, 58(8), 1011–1022. doi:10.1016/j.chemosphere.2004.09.047.

    Article  CAS  Google Scholar 

  • Meers, E., Tack, F. M. G., Van Slycken, S., Ruttens, A., Du Laing, G., Vangronsveld, J., et al. (2008). Chemically assisted phytoextraction: a review of potential soil amendments for increasing plant uptake of heavy metals. International Journal of Phytoremediation, 10(5), 390–414. doi:10.1080/15226510802100515.

    Article  CAS  Google Scholar 

  • Moreno, D. A., Víllora, G., Hernández, J., Castilla, N., & Romero, L. (2002). Accumulation of Zn, Cd, Cu, and Pb in Chinese cabbage as influenced by climatic conditions under protected cultivation. Journal of Agricultural and Food Chemistry, 50(7), 1964–1969. doi:10.1021/jf011142v.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology, 60(1–4), 193–207. doi:10.1016/S0013-7952(00)00101-0.

    Article  Google Scholar 

  • Neugschwandtner, R. W., Tlustoš, P., Komárek, M., & Száková, J. (2008). Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes: laboratory versus field scale measures of efficiency. Geoderma, 144(3–4), 446–454. doi:10.1016/j.geoderma.2007.11.021.

    Article  CAS  Google Scholar 

  • Nowack, B., Schulin, R., & Robinson, B. H. (2006). Critical assessment of chelant-enhanced metal phytoextraction. Environmental Science & Technology, 40(17), 5225–5232. doi:10.1021/es0604919.

    Article  CAS  Google Scholar 

  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184(1–4), 105–126. doi:10.1007/s11270-007-9401-5.

    Article  CAS  Google Scholar 

  • Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Science, 180(2), 169–181. doi:10.1016/j.plantsci.2010.08.016.

    Article  CAS  Google Scholar 

  • Reynolds, E. S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. The Journal of Cell Biology, 17(1), 208–212. doi:10.1083/jcb.17.1.208.

    Article  CAS  Google Scholar 

  • Saifullah, Meers, E., Qadir, M., de Caritat, P., Tack, F. M. G., Du Laing, G., et al. (2009). EDTA-assisted Pb phytoextraction. Chemosphere, 74(10), 1279–1291. doi:10.1016/j.chemosphere.2008.11.007.

    Article  CAS  Google Scholar 

  • Sarret, G., Vangronsveld, J., Manceau, A., Musso, M., D’Haen, J., Menthonnex, J.-J., et al. (2001). Accumulation Forms of Zn and Pb in Phaseolus vulgaris in the presence and absence of EDTA. Environmental Science & Technology, 35(13), 2854–2859. doi:10.1021/es000219d.

    Article  CAS  Google Scholar 

  • Sas-Nowosielska, A. (2004). Phytoextraction crop disposal—an unsolved problem. Environmental Pollution, 128(3), 373–379. doi:10.1016/j.envpol.2003.09.012.

    Article  CAS  Google Scholar 

  • Shibata, M., Konno, T., Akaike, R., Xu, Y., Shen, R., & Ma, J. F. (2006). Phytoremediation of Pb contaminated soil with polymer-coated EDTA. Plant and Soil, 290(1–2), 201–208. doi:10.1007/s11104-006-9152-x.

    Google Scholar 

  • Sun, Y., Zhou, Q., An, J., Liu, W., & Liu, R. (2009). Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance). Geoderma, 150(1–2), 106–112. doi:10.1016/j.geoderma.2009.01.016.

    Article  CAS  Google Scholar 

  • Tian, S., Lu, L., Yang, X., Huang, H., Brown, P., Labavitch, J., et al. (2011). The impact of EDTA on lead distribution and speciation in the accumulator Sedum alfredii by synchrotron x-ray investigation. Environmental Pollution, 159(3), 782–788. doi:10.1016/j.envpol.2010.11.020.

    Article  CAS  Google Scholar 

  • Vassil, A. D., Kapulnik, Y., Raskin, I., & Salt, D. E. (1998). The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiology, 117, 447–453.

    Article  CAS  Google Scholar 

  • Wu, G., Kang, H., Zhang, X., Shao, H., Chu, L., & Ruan, C. (2010). A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. Journal of Hazardous Materials, 174(1–3), 1–8. doi:10.1016/j.jhazmat.2009.09.113.

    Article  CAS  Google Scholar 

  • Wu, L., Luo, Y., Xing, X., & Christie, P. (2004). EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agriculture, Ecosystems & Environment, 102(3), 307–318. doi:10.1016/j.agee.2003.09.002.

    Article  CAS  Google Scholar 

  • Zaier, H., Ghnaya, T., Ben Rejeb, K., Lakhdar, A., Rejeb, S., & Jemal, F. (2010). Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus. Bioresource Technology, 101(11), 3978–3983. doi:10.1016/j.biortech.2010.01.035.

    Article  CAS  Google Scholar 

  • Zhao, S., Lian, F., & Duo, L. (2011). EDTA-assisted phytoextraction of heavy metals by turfgrass from municipal solid waste compost using permeable barriers and associated potential leaching risk. Bioresource Technology, 102(2), 621–626. doi:10.1016/j.biortech.2010.08.006.

    Article  CAS  Google Scholar 

  • Zhao, S., Shang, X., & Duo, L. (2012). Accumulation and spatial distribution of Cd, Cr, and Pb in mulberry from municipal solid waste compost following application of EDTA and (NH4)2SO4. Environmental Science and Pollution Research, 20(2), 967–975. doi:10.1007/s11356-012-0992-z.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the National Science Foundation for support of this work under Grant no. 0116170 and the Saginaw Bay Watershed Initiative Network for project support. We acknowledge SVSU student Heather Claxton and ACS Project SEED student Robert Woys for their contributions to the experimental work. We also thank Xudong Fan of the Michigan State University Center for Advanced Electron Microscopy and Bruce Hart of the SVSU Independent Testing Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Karpovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krueger, E., Darland, J., Goldyn, S. et al. Water Leaching of Chelated Pb Complexes from Post-Phytoremediation Biomass. Water Air Soil Pollut 224, 1615 (2013). https://doi.org/10.1007/s11270-013-1615-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1615-0

Keywords

Navigation