Skip to main content
Log in

Humic Acid Addition Enhances B and Pb Phytoextraction by Vetiver Grass (Vetiveria zizanioides (L.) Nash)

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Phytoremediation is an attractive, economic alternative to soil removal and burial methods to remediate contaminated soil. However, it is also a slow process. The effect of humic acid in enhancing B and Pb phytoextraction from contaminated soils was studied (pot experiment) using transplanted vetiver grass (Vetiveria zizanioides (L.) Nash). Boron was applied at 0, 45, 90 and 180 kg B ha−1 soil (as H3BO3) in 16 replicates. Of the 64 pots, four pots each were treated with 0, 100, 200 and 400 kg ha−1 humic acid (HA) solution. In a separate experiment, Pb was applied (as Pb(NO3)2) at 0, 45, 90 and 180 kg Pb ha−1 prior to addition of HA solutions at levels identical to the B experiment. Experiments were conducted using a randomized complete block design with four replicates. Vetiver grass was harvested 90 days after planting. Lead addition beyond 45 kg Pb ha−1 decreased Pb uptake mostly due to a yield decline. Humic acid application increased Pb availability in soil and enhanced Pb uptake while maintaining or enhancing yield. An application of 200 kg HA ha−1 was optimal for maintaining yield at elevated Pb levels. Boron application did not impact yield but greatly increased B content of roots and shoot. Boron uptake was greatest upon addition of 400 kg HA ha−1. We conclude that HA addition to vetiver grass can be an effective way to enhance phytoremediation of B and Pb but optimum rates differ depending on soil B and Pb contamination levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angin, I., & Turan, M. (2004). Phytoremediation (a review). In International soil congress (ISC) on natural resource management for sustainable development. Erzurum, Turkey: Soil Science Society of Turkey, Atatürk University, June.

  • AOAC (Association of Official Analytical Chemists-International) (1990). Official methods of analysis (15st ed.). Arlington, VA: AOAC-Int.

    Google Scholar 

  • Atiyeh, R. M., Lee, S., Edwards, C. A., Arancon, N. Q., & Metzger, J. D. (2002). The influence of humic acids derived from earthworm processed organic wastes on plant growth. Bioresource Technology, 84, 7–14.

    Article  CAS  Google Scholar 

  • Bama, K. S., & Selvakumari, G. (2005). Effect of humic acid and fertilizers on yield and nutrition of rice in alfisol. Journal of Ecobiology, 17(1), 41–47.

    CAS  Google Scholar 

  • Bingham, F. T. (1982). Boron. In A. L. Page, R. H. Miller, & E. D. Keeney (Eds.) Methods of soil analysis, Part II, chemical and microbiological properties ((pp. 431–448)2nd ed.). Madison, WI: ASA.

    Google Scholar 

  • Bremner, J. M. (1996). Nitrogen-total. In D. L. Sparks (Ed.) Methods of soil analysis, Part III, chemical methods ((pp. 1085–1122)2nd ed.). Madison, WI: ASA.

    Google Scholar 

  • Brun, L. A., Maillet, J., Hinsinger, P., & Pepin, M. (2001). Evaluation of copper availability in copper contaminated vineyards soils. Environmental Pollution, 111, 293–302.

    Article  CAS  Google Scholar 

  • Burau, R. E. (1982). Lead. In A. L. Page, R. H. Miller, & E. D. Keeney (Eds.) Methods of soil analysis, Part II, chemical and microbiological properties ((pp. 347–366)2nd ed.). Madison, WI: ASA.

    Google Scholar 

  • Chantachon, S., Kruatrachue, M., Pokethitiyook, P., Upatham, S., Tantanasarit, S., & Soonthornsarathool, V. (2004). Phytoextraction and accumulation of lead from contaminated soil by vetiver grass: Laboratory and simulated field study. Water, Air, and Soil Pollution, 154, 37–55.

    Article  CAS  Google Scholar 

  • Chatterjee, J., & Chatterjee, C. (2000). Phytotoxicity of cobalt, chromium and copper availability in copper-contamianted vineyards soils. Environmental Pollution, 109, 69–74.

    Article  CAS  Google Scholar 

  • Chen, Y., & Aviad, T. (1990). Effects of humic substances on plant growth. In P. MacCarthy (Ed.) Humic substances in soil and crop sciences: Selected readings (pp. 161–186). Madison, WI: ASA.

    Google Scholar 

  • Chen, H. M., Zheng, C. R., Tu, C., & Shen, Z. G. (2000). Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere, 41, 229–234.

    Article  CAS  Google Scholar 

  • Chen, Y., Shen, Z., & Li, X. (2004). The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soil contaminated with heavy metals. Applied Geochemistry, 19, 1553–1565.

    Article  CAS  Google Scholar 

  • Choi, E.-Y., McNeill, A., Coventry, D., & Stangoulis, J. (2006). Whole plant response of crop and weed species to high subsoil boron. Australian Journal of Agricultural Research, 57, 761–770.

    Article  CAS  Google Scholar 

  • DIN (1995). Soil quality extraction of trace elements with ammonium nitrate solution. Berlin, Germany: Deutsch Institut fur Normung 19730.

    Google Scholar 

  • Ensley, B. D. (2000). Rationale for use of phytoremediation. In I. Raskin, & B. D. Ensley (Eds.) Phytoremediation of toxic metals: Using plants to clean up the environment (pp. 3–12). Mississauga, ON, Canada: Wiley.

    Google Scholar 

  • Evangelou, M. W. H., Daghan, H., & Schaeffer, A. (2004). The influence of humic acids on the phytoextraction of cadmium from soil. Chemosphere, 57, 207–213.

    Article  CAS  Google Scholar 

  • Evangelou, M. W. H., Ebel, M., & Schaeffer, A. (2007). Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere, 68, 989–1003.

    Article  CAS  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.) Methods of soil analysis, part I, physical and mineralogical methods ((pp. 383–441)2nd ed.). Madison, WI: ASA.

    Google Scholar 

  • Herawati, N., Susuki, S., Hayashi, K., Rivai, I. F., & Koyama, H. (2000). Cadmium, copper and zinc levels in rice and soil of Japan, Indonesia, and China by soil type. Bulletin of Environmental Contamination and Toxicology, 64, 33–39.

    Article  CAS  Google Scholar 

  • Hofrichter, M., & Steinbüchel, A. (2004). Biopolymers. Vol. 1. Lignin, humic substances and coal. Weinheim, NY: Wiley Europe-VCH.

    Google Scholar 

  • Kayser, A., Wenger, K., Keller, A., Attinger, W., Felix, H. R., Gupta, S. K., & Schulin, R. (2000). Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: The use of NTA and sulfur amendments. Environmental Science & Technology, 34, 1778–1783.

    Article  CAS  Google Scholar 

  • Kim, S. O., Moon, S. H., & Kim, K. W. (2001). Removal of heavy metals from soils using enhanced electro kinetic soil processing. Water Air and Soil Pollution, 125, 259–272.

    Article  CAS  Google Scholar 

  • Lagier, T., Feuillade, G., & Matejka, G. (2000). Interactions between copper and organic macromolecules: Determination of conditional complexation constants. Agronomie, 20, 537–546.

    Article  Google Scholar 

  • Li, H., Wang, Q., Cui, Y., Dong, Y., & Christie, P. (2005). Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil – A preliminary study. Science of the Total Environment, 339, 179–187.

    Article  CAS  Google Scholar 

  • Mackowiak, C. L., Grossl, P. R., & Bugbee, B. G. (2001). Beneficial effects of humic acid on micronutrient availability to wheat. Soil Science Society of America Journal, 65, 1744–1750.

    Article  CAS  Google Scholar 

  • McBride, M. S. (1994). Environmental chemistry of soils. New York: Oxford University Press.

    Google Scholar 

  • McLean, E. O. (1982). Soil pH and lime requirement. In A. L. Page, R. H. Miller, & E. D. Keeney (Eds.) Methods of soil analysis, part II, chemical and microbiological properties ((pp. 199–224)2nd ed.). Madison, WI: ASA.

    Google Scholar 

  • Naidu, R., & Harter, R. D. (1998). Effect of different organic ligands on cadmium sorption by and extractability from soils. Soil Science Society of America Journal, 62, 644–650.

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1982). Organic matter. In A. L. Page, R. H. Miller, & E. D. Keeney (Eds.) Methods of soil analysis, part II, chemical and microbiological properties ((pp. 574–579)2nd ed.). Madison, WI: ASA.

    Google Scholar 

  • Norvell, W. A. (1991). Reactions of metal chelates in soils and nutrient solutions. In J. J. Mortvedt (Ed.) Micronutrients in agriculture (pp. 187–2272nd ed.). Madison, WI: SSSA Book Series No. 4.

    Google Scholar 

  • Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939, Washington, DC.

  • Qadir, M., Steffens, D., Yan, F., & Schubert, S. (2003). Sodium removal from a calcareous saline-sodic soil through leaching and plant uptake during phytoremediation. Land Degradation & Development, 14, 301–307.

    Article  Google Scholar 

  • Rhoades, J. D. (1982). Cation exchange capacity. In A. L. Page, R. H. Miller, & E. D. Keeney (Eds.) Methods of soil analysis, part II, chemical and microbiological properties ((pp. 149–157)2nd ed.). Madison, WI: ASA.

    Google Scholar 

  • Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. In D. L. Sparks (Ed.) Methods of soil analysis, part III, chemical methods ((pp. 417–436)2nd ed.). Madison, WI: ASA.

    Google Scholar 

  • SAS Institute Inc. (1999). SAS User’s Guide. SAS Inst., Cary, NC.

    Google Scholar 

  • Schnoor, J. L. (1997). Phytoremediation. Ground-water remediation technologies analysis center; Technology Evaluation Report (TE-98-01), Iowa City, IO.

  • Soil Survey Staff (1992). Keys to soil taxonomy (5th ed.). Blacksburg, VA: SMSS Technical Monograph No: 19, Pocahontas Press Inc.

    Google Scholar 

  • Soylu, S., Topal, A., Sade, B., Akgun, N., Gezgin, S., & Babaoglu, M. (2004). Yield and yield attributes as affected by boron application in boron-deficient calcareous soils: An evaluation of major Turkish genotypes for boron efficiency. Journal of Plant Nutrition, 27, 1077–1106.

    Article  CAS  Google Scholar 

  • Sumner, M. E., & Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. In D. L. Sparks (Ed.) Methods of soil analysis, Part III, chemical methods ((pp. 1201–1230)2nd ed.). Madison, WI: ASA.

    Google Scholar 

  • Truong, P. N., McDowell, M., & Christiansen, I. (1995). Stiff grass barrier with vetiver grass – A new approach to erosion and sediment control. In H. M. Hunter, A. G. Eyles, & G. E. Rayment (Eds.) Proceedings, Downstream Effects of Land Use National Conference, Rockhamton, Queensland, Australia, 26–28 April 1995 (pp. 301–304).

  • Turan, M., & Angin, I. (2004). Organic chelate assisted phytoextraction of B, Cd, Mo and Pb from contaminated soils using two agricultural crop species. Acta Agriculturæ Scandinavica Section B, Soil and Plant Science, 54, 221–231.

    Article  CAS  Google Scholar 

  • Turan, M., & Esringu, A. (2007). Phytoremediation based on canola (Brassisa napus L.) and Indian mustard (Brassica juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb and Zn. Plant Soil Environment, 1, 7–15.

    Google Scholar 

  • USDA-NRCS (2000). Heavy metal soil contamination. Auburn, AL: Soil Quality Institute: Urban Technical Note No. 3.

    Google Scholar 

  • Valdrighi, M. M., Pera, A., Agnolucci, M., Frassinetti, S., Lunardi, D., & Vallini, G. (1996). Effects of compost-derived humic acids on vegetable biomass production and microbial growth within a plant (Cichorium intybus) – Soil system: A comparative study. Agriculture, Ecosystems & Environment, 58, 133–144.

    Article  Google Scholar 

  • Wenger, K., Kayser, A., Gupta, S. K., Furrer, G., & Schulin, R. (2002). Comparison of NTA and elemental sulfur as potential soil amendments in phytoremediation. Soil & Sediment Contamination, 11, 655–672.

    Article  CAS  Google Scholar 

  • Wolf, B. (1972). Improvements in the Azomethine-H method for determining boron. Communications in Soil Science and Plant Analysis, 5, 39–44.

    Google Scholar 

  • Zhang, X., Ervin, E. H., & Schmidt, R. E. (2003). Plant growth regulators can enhance the recovery of Kentucky bluegrass sod from heat injury. Crop Science, 43, 952–956.

    Article  CAS  Google Scholar 

  • Zhao, F., McGrath, S. P., & Crosland, A. R. (1994). Comparision of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma emission spectrophotometry. Communications in Soil Science and Plant Analysis, 25, 407–418.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Muhammet Kilci for supplying the vetiver seedlings for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Metin Turan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angin, I., Turan, M., Ketterings, Q.M. et al. Humic Acid Addition Enhances B and Pb Phytoextraction by Vetiver Grass (Vetiveria zizanioides (L.) Nash). Water Air Soil Pollut 188, 335–343 (2008). https://doi.org/10.1007/s11270-007-9548-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9548-0

Keywords

Navigation