Skip to main content

Advertisement

Log in

Distribution and Mobility of Trace Elements in Soils and Vegetation Around the Mining and Smelting Areas of Tharsis, Ríotinto and Huelva, Iberian Pyrite Belt, SW Spain

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Trace elements may present an environmental hazard in the vicinity of mining and smelting activities. However, the factors controlling their distribution and transfer within the soil and vegetation systems are not always well defined. Total concentrations of up to 15,195 mg . kg –1 As, 6,690 mg . kg–1 Cu, 24,820 mg . kg–1 Pb and 9,810 mg . kg–1 Zn in soils, and 62 mg . kg–1 As, 1,765 mg . kg–1 Cu, 280 mg . kg–1 Pb and 3,460 mg . kg –1 Zn in vegetation were measured. However, unusually for smelters and mines of a similar size, the elevated trace element concentrations in soils were found to be restricted to the immediate vicinity of the mines and smelters (maximum 2–3 km). Parent material, prevailing wind direction, and soil physical and chemical characteristics were found to correlate poorly with the restricted trace element distributions in soils. Hypotheses are given for this unusual distribution: (1) the contaminated soils were removed by erosion or (2) mines and smelters released large heavy particles that could not have been transported long distances. Analyses of the accumulation of trace elements in vegetation (median ratios: As 0.06, Cu 0.19, Pb 0.54 and Zn 1.07) and the percentage of total trace elements being DTPA extractable in soils (median percentages: As 0.06%, Cu 15%, Pb 7% and Zn 4%) indicated higher relative trace element mobility in soils with low total concentrations than in soils with elevated concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abd-Elfattah, A., & Wada, K. (1981). Adsorption of lead, copper, zinc, cobalt, and cadmium by soils that differ in cation-exchange materials. Journal of Soil Science, 32, 271–283.

    Article  CAS  Google Scholar 

  • Adamo, P., Dudka, S., Wilson, M. J., & McHardy, W. J. (1996). Chemical and mineralogical forms of Cu and Ni in contaminated soils from the Sudbury mining and smelting region, Canada. Environmental Pollution, 91, 11–19.

    Article  CAS  Google Scholar 

  • Akram, M., Chaudhry, R. A., Ahmad, Z., & Haq, G. U. (1995). Predicting DTPA soil test zinc and associated rice response to applied zinc. Communications in Soil Science and Plant Analysis, 26, 259–268.

    CAS  Google Scholar 

  • Allen-Gil, S. M., Ford, J., Lasorsa, B. K., Monetti, M., Vlasosa, T., & Landers, D. H. (2003). Heavy metal contamination in the Taimyr Peninsula, Siberian Artic. Science of the Total Environment, 301, 119–138.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (1995). Heavy metals in soils. London: Blackie Academic.

    Google Scholar 

  • Alloway, B. J., & Ayres, D. C. (1997). Chemical principles of environmental pollution. London: Blackie Academic.

    Google Scholar 

  • Alvarenga, P. M., Araújo, M. F., & Silva, J. A. L. (2004). Elemental uptake and root-leaves transfer in Cistus ladanifer L. growing in a contaminated pyrite mining area (Aljustrel-Portugal). Water, Air, and Soil Pollution, 152, 81–96.

    Article  CAS  Google Scholar 

  • Atlantic Copper Declaración Medioambiental (2002). (n.d.). Retrieved January 2004, from http://atlantic-copper.es/web800i/index.html.

  • Avery, D. (1974). Not on Queen Victoria’s birthday: The story of the Río Tinto Mines. London: Collins.

    Google Scholar 

  • Bacon, J. R., & Dinev, N. S. (2005). Isotopic characterisation of lead in contaminated soils from the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria. Environmental Pollution, 134, 247–255.

    Article  CAS  Google Scholar 

  • Baker, A. J. M. (1981). Accumulators and excluders-strategies in the response of plants to heavy-metals. Journal of Plant Nutrition, 3, 643–654.

    Article  CAS  Google Scholar 

  • Batista, M. J., Abreu, M. M., & Serrano Pinto, M. (2007). Biogeochemistry in Neves Corvo mining region, Iberian Pyrite Belt, Portugal. Journal of Geochemical Exploration, 92, 159–176.

    Google Scholar 

  • Bosco, M. L., Varrica, D., & Dongarra, G. (2005). Case study: Inorganic pollutants associated with particulate matter from an area near a petrochemical plant. Environmental Research, 99, 18–30.

    Article  CAS  Google Scholar 

  • British Standard BS 7755 (1995). Section 3.9: 1995 ISO 11466, 1995. Soil Quality Part 3. Chemical methods section 3.9 Extraction of trace elements soluble in Aqua regia.

  • Buol, S. W., Hole, F. D., & McCracken, R. J. (1997). Soil genesis and classification. Ames, Iowa: Iowa State University Press.

    Google Scholar 

  • Buurman, P., Pape, T., & Muggler, C. C. (1997). Laser grain-size determination in soil genetic studies 1. Practical problems. Soil Science, 162, 212–218.

    Article  Google Scholar 

  • Buznikov, A. A., Payanskaya-Gvozdeva, I. I., Jurkovskaya, T. K., & Andreeva, E. N. (1995). Use of remote and ground methods to assess the impacts of smelter emissions in the Kola peninsula. Science of the Total Environment, 160/161, 285–293.

    Article  Google Scholar 

  • Cajuste, L. J., Vazquez, A., & Miranda, E. (2002). Long-term changes in the extractability and availability of lead, cadmium, and nickel in soils under wastewater irrigation. Communications in Soil Science and Plant Analysis, 33, 3325–3333.

    Article  CAS  Google Scholar 

  • Carvalho, D. (1998, Septembre). Exploration strategies in the Iberian pyrite belt: A young, mature, or senile mineral exploration province? (Paper presented at the Mining Development Strategies With a Focus on the Iberian Pyrite Belt Technical Journey, Lisbon, Portugal).

  • Checkland, S. G. (1967). The mines of Tharsis: Roman, French and British Entreprise in Spain. London: Allen & Unwin.

    Google Scholar 

  • Chopin, E. I. B., Black, S., Hodson, M. E., Coleman, M. L., & Alloway, B. J. (2003). A preliminary investigation into mining and smelting impacts on trace element concentrations in the soils and vegetation around Tharsis, SW Spain. Mineralogical Magazine, 67, 279–288.

    Article  CAS  Google Scholar 

  • DEFRA & Environment Agency (2002a). Soil guideline values for arsenic contamination. R&D Publication SGV 1.

  • DEFRA & Environment Agency (2002b). Soil guideline values for lead contamination. R&D Publication SGV 10.

  • Díaz-Barrientos, E., Madrid, L., Maqueda, C., Morillo, E., Ruiz-Cortés, E., Basallote, E., et al. (2003). Copper and zinc retention by an organically amended soil. Chemosphere, 50, 911–917.

    Article  Google Scholar 

  • Dinelli, E., & Lombini, A. (1996). Metal distribution in plants growing on copper mine spoils in Northern Apennines, Italy: The evaluation of seasonal variations. Applied Geochemistry, 11, 375–385.

    Article  CAS  Google Scholar 

  • Donisa, C., Mocanu, R., Steinnes, E., & Vasu, A. (2000). Heavy metal pollution by atmospheric transport innatural soils from the northern part of Eastern Carpathians. Water, Air, and Soil Pollution, 120, 347–358.

    Article  CAS  Google Scholar 

  • Dudka, S., Ponce-Hernandez, R., & Hutchinson, T. C. (1995). Current level of total element concentrations in the surface layer of Sudbury’s soils. Science of the Total Environment, 162, 161–171.

    Article  Google Scholar 

  • EC Sewage Sludge Directive, 86/278/EEC (1986). Official Journal L181, 04-07-86.

  • Ek, A. S., Löfgren, S., Bergholm, J., & Qvarfort, U. (2001). Environmental effects of one thousand years of copper production at falun, Central Sweden. Ambios, 30, 96–103.

    Article  CAS  Google Scholar 

  • FAO/UNESCO (1972). Soil map of the world. Paris: FAO.

    Google Scholar 

  • Fernandez-Turiel, J. L., Aceňolaza, P., Medina, M. E., Llorens, J. F., & Sardi, F. (2001). Assessment of a smelter impact area using surface soils and plants. Environmental Geochemistry and Health, 23, 65–78.

    Article  CAS  Google Scholar 

  • Flores Caballero, M. (1981). Las Antiguas Explotaciónes de las Minas de Río Tinto. Minas de Río Tinto: EXCMA, Diputación Provincial.

    Google Scholar 

  • Gäbler, H.-E. (1997). Mobility of heavy metals as a function of pH of samples from an overbank sediment profile contaminated by mining activities. Journal of Geochemical Exploration, 58, 185–194.

    Article  Google Scholar 

  • García-Sánchez, A., Alastuey, A., & Querol, X. (1999). Heavy metal adsorption by different minerals: application to the remediation of polluted soils. Science of the Total Environment, 242, 179–188.

    Article  Google Scholar 

  • Goodarzi, F., Sanei, H., Garrett, R. G., & Duncan, W. F. (2002). Accumulation of trace elements on the surface soil around the trail smelter, British Columbia, Canada. Environmental Geology, 43, 29–38.

    Article  CAS  Google Scholar 

  • Grzebisz, W., Kocialkowski, W. Z., & Chudzinski, B. (1997). Copper geochemistry and availability in cultivated soils contaminated by a copper smelter. Journal of Geochemical Exploration, 58, 301–307.

    Article  CAS  Google Scholar 

  • Gzyl, J. (1995). Ecological impact and remediation of contaminated sitres around lead smelters in Poland. Journal of Geochemical Exploration, 52, 251–258.

    Article  CAS  Google Scholar 

  • Harter, R. D. (1983). Effect of soil pH on adsorption of lead, copper, zinc and nickel. Soil Science Society of America, 47, 47–51.

    Article  CAS  Google Scholar 

  • Helios Rybicka, E. (1996). Impact of mining and metallurgical industries on the environment in Poland. Applied Geochemistry, 11, 3–9.

    Article  Google Scholar 

  • Horckmans, L., Swennen, R., & Deckers, J. (2006). Geochemical and mineralogical study of a site severely polluted with heavy metals (Maatheilde, Lommel, Belgium). Environmental Geology, 50, 725–742.

    Article  CAS  Google Scholar 

  • Instituto Geográfico Nacional (1981). Mapa Topográfico Nacional de España, Nerva 938-IV (1 : 25.000).

  • Instituto Nacional de Meteorología de España (2002). (n.d.). Retrieved January 2004, from http://www.inm.es.

  • Jarvis, S. C. (1981). Copper sorption by soils at low concentrations and relation to uptake by plants. Journal of Soil Science, 32, 257–269.

    Article  CAS  Google Scholar 

  • Johnson, D., & Hale, B. (2004). White birch (Petula papyrifera Marshall) foliar litter decomposition in relation to trace element atmospheric inputs at metal-contaminated and uncontaminated sites near Sudbury, Ontario and Rouyn Noranda, Quebec, Canada. Environmental Pollution, 127, 65–72.

    Article  CAS  Google Scholar 

  • Jung, M. C., & Thornton, I. (1996). Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine, Korea. Applied Geochemistry, 11, 53–59.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants. Boca Raton: CRC.

    Google Scholar 

  • Kachenko, A. G., & Singh, B. (2006). Heavy metals contamination in vegetables grown in urban and metal smelter contaminated soils in Australia. Water, Air, and Soil Pollution, 169, 101–123.

    Article  CAS  Google Scholar 

  • Kase, K., Yamamoto, M., Nakamura, T., & Mitsuno, C. (1990). Ore mineralogy and sulfur isotope study of the massive sulfide deposit of Filón Norte, Tharsis Mine, Spain. Mineralium Deposita, 25, 289–296.

    Article  CAS  Google Scholar 

  • Kelley, J. A., Jaffe, D. A., Baklanov, A., & Mahura, A. (1995). Heavy metals on the Kola Peninsula: aerosol size distribution. Science of the Total Environment, 160/161, 135–138.

    Article  Google Scholar 

  • Knight, R. D., & Henderson, P. J. (2003). Characterisation of smelter dust from the mineral fraction of humus collected around Rouyn-Noranda, Quebec. In G. Bonham-Carter (Ed.), Metals in the environment around smelters at Rouyn-Noranda, Quebec, and Belledune, New Brunswick: Results and conclusions of the GSC-MITE point sources project. Geological Survey of Canada Bulletin 584.

  • Kraus, U., & Wiegand, J. (2006). Long-term effects of the Aznalcóllar mine spill–heavy metal content and mobility in soils and sediments of the Guadiamar river valley (SW Spain). Science of the Total Environment, 367, 855–871.

    Article  CAS  Google Scholar 

  • Lee, C. G., Chon, H.-T., & Jung, M. C. (2001). Heavy metal contamination in the vicinity of the Daduk Au-Ag-Pb-Zn mine in Korea. Applied Geochemistry, 16, 1377–1386.

    Article  CAS  Google Scholar 

  • Lerouge, C., Deschamps, Y., Joubert, M., Béchu, E., Fouillac, A.-M., & Castro, J. A. (2001). Regional oxygen isotope systematics of felsic volcanics ; a potential exploration tool for volcanogenic massive sulphide deposits in the Iberian Pyrite Belt. Journal of Geochemical Exploration, 72, 193–210.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America, 42, 421–428.

    Article  CAS  Google Scholar 

  • Lunar, R., Moreno, T., Lombardero, M., Regueiro, M., Lopez Vera, F., Martinez del Olmo, W., et al. (2002). Economic Geology. In W. Gibbon & T. Moreno (Eds.), Geology of Spain (pp. 473–510). London: The Geological Society of London Special Publication.

    Google Scholar 

  • Madejón, P., Murillo, J. M., Maraňón, T., Cabrera, F., & López, R. (2002). Bioaccumulation of As, Cd, Cu, Fe and Pb in wild grasses affected by the Aznalcóllar mine spill (SW Spain). Science of the Total Environment, 290, 105–120.

    Article  Google Scholar 

  • Madejón, P., Murillo, J. M., Maraňón, T., Cabrera, F., & Soriano, M. A. (2003). Trace element and nutrient accumulation in sunflower plants two years after the Aznalcóllar mine spill. Science of the Total Environment, 307, 239–257.

    Article  CAS  Google Scholar 

  • Martley, E., Gulson, B. L., & Pfeifer, H.-R. (2004). Metal concentrations in soils around the copper smelter and surrounding industrial complex of Port Kembla, NSW, Australia. Science of the Total Environment, 325, 113–127.

    Article  CAS  Google Scholar 

  • McLaughlin, M. J., Hamon, R. E., McLaren, R. G., Speir, T. W., & Rogers, S. L. (2000). Review: A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Australian Journal of Soil Research, 38, 1037–1086.

    Article  CAS  Google Scholar 

  • Merrington, G., & Alloway, B. J. (1994). The transfer and fate of Cd, Cu, Pb and Zn from two historic metalliferous mine sites in the UK. Applied Geochemistry, 9, 67–77.

    Article  Google Scholar 

  • Ministry of Agriculture, Fisheries and Food (1981). The analysis of agricultural materials RB 427, 2nd Ed.

  • Moreno, T., Querol, X., Alastuey, A., Viana, M., Salvador, P., Sánchez de la Campa, A., et al. (2006). Variations in atmospheric PM trace metal content in Spanish towns: Illustrating the chemical complexity of the inorganic urban aerosol cocktail. Atmospheric Environment, 40, 6791–6803.

    Article  CAS  Google Scholar 

  • Morera, M. T., Echeverría, J. C., Mazkiarán, C., & Garrido, J. J. (2001). Isotherms and sequential extraction procedures for evaluating sorption and distribution of heavy metals in soils. Environmental Pollution, 113, 135–144.

    Article  CAS  Google Scholar 

  • Muggler, C. C., Pape, P., & Buurman, P. (1997). Laser grain-size determination in soil genetic studies 2. Clay content, clay formation and aggregation in some Brazilian oxisols. Soil Science, 162, 219–227.

    Article  CAS  Google Scholar 

  • Muniz, F., & Mayoral, E. (2001). Macanopsis plataniformis Nov Ichnosp from the lower cretaceous and upper miocene of the Iberian Peninsula. Geobios, 34, 91–98.

    Article  Google Scholar 

  • Munk, L. E., Faure, G., Pride, D. E., & Bigham, J. M. (2002). Sorption of trace metals to an aluminium precipitate in a stream receiving acid rock-drainage; Snake River, Summit County, Colorado. Applied Geochemistry, 17, 421–430.

    Article  CAS  Google Scholar 

  • Navarro Vazquez, D., & Ramirez Copeiro del Villar, J. (1978). Mapa Geologico de España, Nerva 938 (1 : 50.000 ; IGME).

  • Niskavaara, H., Reiman, C., & Chekushin, V. (1996). Distribution and pathways of heavy metals and sulphur in the vicinity of the copper-nickel smelters in Nikel and Zapoljarnij, Kola Peninsula, Russia, as revealed by different sample media. Applied Geochemistry, 11, 25–34.

    Article  CAS  Google Scholar 

  • O’Connor, G. A. (1988). Use and misuse of the DTPA soil test. Journal of Environmental Quality, 17, 715–718.

    Article  Google Scholar 

  • Oliveira, J. T. (1983). The marine Carboniferous of South Portugal: A stratigraphic and sedimentological approach. Memorias de los Servicios Geologicos de Portugal, 29, 3–37.

    Google Scholar 

  • Ongley, L. K., Sherman, L., Armienta, A., Concilio, A., & Ferguson Salinas, C. (2006). Arsenic in the soils of Zimapán, Mexico. Environmental Pollution (in press). doi:10.1016/j.envpol.2006.05.014.

  • Peralta-Videa, J. R., Gardea-Torresdey, J. L., Gomez, E., Tiemann, K. J., Parsons, J. G., & Carillo, G. (2002). Effect of mixed cadmium, copper, nickel and zinc at different pHs upon Alfalfa growth and heavy metal uptake. Environmental Pollution, 119, 291–301.

    Article  CAS  Google Scholar 

  • Pope, J. M., Farago, M. E., Thornton, I., & Cordos, E. (2005). Metal enrichment in Zlatna, a Romanian copper smelting town. Water, Air, and Soil Pollution, 162, 1–18.

    Article  CAS  Google Scholar 

  • Querol, X., Alastuey, A., de la Rosa, J., Sánchez-de-la-Campa, A., Plana, F., & Ruiz, C. R. (2002). Source apportionment analysis of atmospheric particulates in an industrialised urban site in southwestern Spain. Atmospheric Environment, 36, 3113–3125.

    Article  CAS  Google Scholar 

  • Ratkin, N. E., Asming, V. E., & Koshkin, V. V. (2001). Cartographic modelling of aerotechnogenic pollution in snow cover in the landscapes of the Kola Peninsula. Chemosphere, 42, 1–8.

    Article  CAS  Google Scholar 

  • Rawlins, B. G., Lark, R. M., Webster, R., & O’Donnell, K. E. (2006). The use of soil survey data to determine the magnitude and extent of historic metal deposition related to atmospheric smelter emissions across Humberside, UK. Environmental Pollution, 143, 416–426.

    Article  CAS  Google Scholar 

  • Richards, B. K., Steenhuis, T. S., Peverly, J. H., & McBride, M. B. (2000). Effect of sludge-processing mode, soil texture and soil pH on metal mobility in undisturbed soil columns under accelerated loading. Environmental Pollution, 109, 327–346.

    Article  CAS  Google Scholar 

  • Rieuwerts, J., & Farago, M. (1996). Heavy metal pollution in the vicinity of a secondary lead smelter in the Czech Republic. Applied Geochemistry, 11, 17–23.

    Article  CAS  Google Scholar 

  • Rogival, D., Scheirs, J., & Blust, R. (2007). Transfer and accumulation of metals in soil–diet–wood mouse food chain along a metal pollution gradient. Environmental Pollution, 145, 516–528.

    Article  CAS  Google Scholar 

  • Ross, S. M. (Ed.) (1994). Toxic metals in soil-plant systems. Chichester: Wiley.

  • Rowell, D. L. (1994). Soil science: Methods and applications. Harlow: Pearson.

    Google Scholar 

  • Saez, R., Pascual, E., Toscano, M., & Almodovar, G. R. (1999). The Iberian type of volcano-sedimentary massive sulphide deposits. Mineralium Deposita, 34, 549–570.

    Article  CAS  Google Scholar 

  • Salemaa, M., Vanha-Majamaa, I., & Derome, J. (2001). Understorey vegetation along a heavy-metal pollution gradient in SW Finland. Environmental Pollution, 112, 339–350.

    Article  CAS  Google Scholar 

  • Salomons, W. (1995). Environmental impact of metals derived from mining activities: Processes, predictions, prevention. Journal of Geochemical Exploration, 52, 5–23.

    Article  CAS  Google Scholar 

  • Sánchez-Rodas, D., Sánchez de la Campa, A., de la Rosa, J. D., Oliveira, V., Gómez-Ariza, J. L., Querol, X., et al. (2007). Arsenic speciation of atmospheric particulate matter (PM 10) in an industrialised urban site in southwestern Spain. Chemosphere, 66, 1485–1493.

    Article  CAS  Google Scholar 

  • Selim, H. M., & Sparks, D. L. (2001). Heavy metals release in soils. Boca Raton: Lewis.

    Google Scholar 

  • Solomon, M., Tornos, F., Large, R. R., Badham, J. N. P., Both, R. A., & Zaw, K. (2004). Zn-Pb-Cu volcanic-hosted massive sulphide deposits: criteria for distinguishing brine pool-type from black smoker-type sulphide deposition. Ore Geology Reviews, 25, 259–283.

    Article  Google Scholar 

  • Tan, K. H. (1994) Environmental soil science. New York: Marcel Dekker.

    Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Thornton, I. (1996). Impacts of mining on the environment; some local, regional and global issues. Applied Geochemistry, 11, 355–361.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the University of Reading Research Endowment Trust Fund (RETF) for financial support during this study. We thank one anonymous reviewer for his comments which helped significantly to improve the first version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. B. Chopin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chopin, E.I.B., Alloway, B.J. Distribution and Mobility of Trace Elements in Soils and Vegetation Around the Mining and Smelting Areas of Tharsis, Ríotinto and Huelva, Iberian Pyrite Belt, SW Spain. Water Air Soil Pollut 182, 245–261 (2007). https://doi.org/10.1007/s11270-007-9336-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9336-x

Keywords

Navigation