Skip to main content
Log in

Allelopathy as a mechanism for the invasion of Typha angustifolia

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The direct competitive effects of exotic plants on natives are among the leading causes of plant extinctions worldwide. Allelopathy, one type of direct plant competition, has received relatively little research, particularly in aquatic and wetland systems, even though allelopathy can be a potent mechanism through which plant communities are structured. Typha angustifolia (narrow-leaved cattail) is an invasive exotic plant in North America that often forms monocultures in disturbed wetlands and is more invasive than native members of its genus. We tested whether T. angustifolia was allelopathic and whether it produced different biochemicals than a native congener by growing it with the native bulrush Bolboschoenus fluviatilis (river bulrush) in soil with and without activated carbon and by qualitatively and quantitatively comparing soluble phenolics produced in the roots of T. angustifolia and the native Typha latifolia (broad-leaved cattail). T. angustifolia had a strong allelopathic effect on B. fluviatilis, reducing the longest leaf length and root, shoot, and total biomass of B. fluviatilis. When the allelopathy of T. angustifolia was ameliorated by activated carbon, however, longest leaf length, ramet number, root biomass, shoot biomass, and total biomass of T. angustifolia were greatly reduced due to resource competition with B. fluviatilis. Furthermore, T. angustifolia produced different, but not more, soluble phenolics than T. latifolia suggesting that the identity of the phenolics is different between the two species rather than the concentrations. The allelopathic effects of T. angustifolia on a North American native wetland plant and its production of root biochemicals that appear to differ from those produced by a native congener are consistent with the possibility that T. angustifolia may use a novel allelochemical in its invasion of North American wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albalat Domènech J, Pèrez E, Gallardo M et al (1997) Identification of allelopathic chemicals in a pond of cattails. Fla Scientist 60:202–203

    Google Scholar 

  • Aliotta G, Della Greca M, Monaco P et al (1990) In vitro algal growth inhibition by phytotoxins of Typha latifolia L. J Chem Ecol 16:2637–2646. doi:10.1007/BF00988075

    Article  CAS  Google Scholar 

  • Bauer CR, Kellogg CH, Bridgham SD et al (2003) Mycorrhizal colonization across hydrologic gradients in restored and reference freshwater wetlands. Wetlands 23:961–968. doi:10.1672/0277-5212(2003)023[0961:MCAHGI]2.0.CO;2

    Article  Google Scholar 

  • Blum U (1996) Allelopathic interactions involving phenolic acids. J Nematol 28:259–267

    PubMed  CAS  Google Scholar 

  • Blum U (1998) Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J Chem Ecol 24:685–708. doi:10.1023/A:1022394203540

    Article  CAS  Google Scholar 

  • Box JD (1983) Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Water Res 17:511–525. doi:10.1016/0043-1354(83)90111-2

    Article  CAS  Google Scholar 

  • Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523. doi:10.1126/science.290.5491.521

    Article  PubMed  CAS  Google Scholar 

  • Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443

    Article  Google Scholar 

  • Callaway RM, DeLuca TH, Belliveau WM (1999) Biological-control herbivores may increase competitive ability of the noxious weed Centaurea maculosa. Ecology 80:1196–1201

    Google Scholar 

  • Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev Camb Philos Soc 74:311–345. doi:10.1017/S0006323199005356

    Article  PubMed  CAS  Google Scholar 

  • Della Greca M, Mangoni L, Molinaro A et al (1990a) 5β,8β-epidioxyergosta-6,22-dien-3β-ol from Typha latifolia. Gazz Chim Ital 120:391–392

    CAS  Google Scholar 

  • Della Greca M, Monaco P, Previtera L (1990b) Carotenoid-like compounds from Typha latifolia. J Nat Prod 53:972–974. doi:10.1021/np50070a031

    Article  CAS  Google Scholar 

  • Della Greca M, Monaco P, Previtera L (1990c) Stigmasterols from Typha latifolia. J Nat Prod 53:1430–1435. doi:10.1021/np50072a005

    Article  CAS  Google Scholar 

  • Didham RK, Tylianakis JM, Hutchison MA et al (2005) Are invasive species the drivers of ecological change? Trends Ecol Evol 20:470–474. doi:10.1016/j.tree.2005.07.006

    Article  PubMed  Google Scholar 

  • Dunham RM, Ray AM, Inouye RS (2003) Growth, physiology, and chemistry of mycorrhizal and nonmycorrhizal Typha latifolia seedlings. Wetlands 23:890–896. doi:10.1672/0277-5212(2003)023[0890:GPACOM]2.0.CO;2

    Article  Google Scholar 

  • Ervin GN, Wetzel RG (2003) An ecological perspective of allelochemical interference in land–water interface communities. Plant Soil 256:13–28. doi:10.1023/A:1026253128812

    Article  CAS  Google Scholar 

  • Fageria NK, Baligar VC (2003) Upland rice and allelopathy. Commun Soil Sci Plant Anal 34:1311–1329. doi:10.1081/CSS-120020447

    Article  CAS  Google Scholar 

  • Gallardo MT, Martin BB, Martin DF (1998) Inhibition of water fern Salvinia minima by cattail (Typha domingensis) extracts and by 2-chlorophenol and salicylaldehyde. J Chem Ecol 24:1483–1490. doi:10.1023/A:1020955615868

    Article  CAS  Google Scholar 

  • Gallardo MT, Sawyers WG, Martin DF (1999) Concentrations of two phytotoxic materials in cattail extracts: 2-chlorophenol and salicylaldehyde. Fla Scientist 62:164–171

    CAS  Google Scholar 

  • Gallardo-Williams MT, Meadows DG, Mendoza-Galvez LB et al (2001) Effect of concentration and decomposition time on the phytotoxicity of cattail (Typha domingensis) extracts. Fla Scientist 64:44–55

    CAS  Google Scholar 

  • Gallardo-Williams MT, Geiger CL, Pidala JA et al (2002) Essential fatty acids and phenolic acids from extracts and leachates of southern cattail (Typha domingensis P.). Phytochemistry 59:305–308. doi:10.1016/S0031-9422(01)00449-6

    Article  PubMed  CAS  Google Scholar 

  • Gopal B, Goel U (1993) Competition and allelopathy in aquatic communities. Bot Rev 59:155–210. doi:10.1007/BF02856599

    Article  Google Scholar 

  • Grace JB, Wetzel RG (1981) Habitat partitioning and competitive displacement in cattails (Typha): experimental field studies. Am Nat 118:463–474. doi:10.1086/283841

    Article  Google Scholar 

  • Gross EM (2003) Allelopathy of aquatic autotrophs. CRC Crit Rev Plant Sci 22:313–339. doi:10.1080/713610859

    Article  Google Scholar 

  • Gurevitch J, Padilla DK (2004) Are invasive species a major cause of extinctions? Trends Ecol Evol 19:470–474. doi:10.1016/j.tree.2004.07.005

    Article  PubMed  Google Scholar 

  • Harborne JB (1989) Plant phenolics. Academic Press, London

    Google Scholar 

  • Hierro JL, Callaway RM (2003) Allelopathy and exotic plant invasion. Plant Soil 256:29–39. doi:10.1023/A:1026208327014

    Article  CAS  Google Scholar 

  • Inderjit (1996) Plant phenolics in allelopathy. Bot Rev (Lancaster) 62:186–202

    Article  Google Scholar 

  • Inderjit, del Moral R (1997) Is separating resource competition from allelopathy realistic? (Interpreting Botanical Progress). Bot Rev 62:221–230

    Article  Google Scholar 

  • McNaughton SJ (1968) Autotoxic feedback in relation to germination and seedling growth in Typha latifolia. Ecology 49:367–369. doi:10.2307/1934475

    Article  Google Scholar 

  • Michalet R, Brooker RW, Cavieres LA, Kikvidze et al (2006) Do biotic interactions shape both sides of the hump-back model of species richness in plant communities? Ecol Lett 9:767–773. doi:10.1111/j.1461-0248.2006.00935.x

    Article  PubMed  Google Scholar 

  • Nilsson MC (1994) Separation of allelopathy and resource competition by the boreal dwarf shrub Empetrum hermaphroditum Hagerup. Oecologia 98:1–7. doi:10.1007/BF00326083

    Article  Google Scholar 

  • Olofsdotter M, Jensen LB, Courtois B (2002) Improving crop competitive ability using allelopathy—an example from rice. Plant Breed 121:1–9. doi:10.1046/j.1439-0523.2002.00662.x

    Article  Google Scholar 

  • Prindle V, Martin DF (1996) Allelopathic properties of cattails, Typha domingensis, in Hillsborough County, Florida. Fla Scientist 59:155–162

    Google Scholar 

  • Prindle V, Sawyers WG, Martin BB et al (1997) Isolation of allelopathic substances from cattails, Typha domingensis, from Hillsborough County. Fla Scientist 60:24–25 Abstract

    Google Scholar 

  • Ray AM, Inouye RS (2006) Effects of water-level fluctuations on the arbuscular mycorrhizal colonization of Typha latifolia L. Aquat Bot 84:210–216. doi:10.1016/j.aquabot.2005.10.005

    Article  Google Scholar 

  • Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109. doi:10.1146/annurev.ecolsys.27.1.83

    Article  Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic Press, New York

    Google Scholar 

  • Ridenour WM, Callaway RM (2001) The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia 126:444–450. doi:10.1007/s004420000533

    Article  Google Scholar 

  • Ruhland CT, Day TA (2000) Effects of ultraviolet-B radiation on leaf elongation, production and phenylpropanoid concentrations in Deschampsia antarctica and Colobanthus quitensis in Antarctica. Physiol Plant 109:244–251. doi:10.1034/j.1399-3054.2000.100304.x

    Article  CAS  Google Scholar 

  • Ruhland CT, Xiong FS, Clark WD et al (2005) The influence of ultraviolet-B radiation on growth, hydroxycinnamic acids and flavonoids of Deschampsia antarctica during springtime ozone depletion in Antarctica. Photochem Photobiol 81:1086–1093. doi:10.1562/2004-09-18-RA-321

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute (2008) SAS Release 9.1. SAS Inst, Cary, NC

    Google Scholar 

  • Seigler DS (1996) Chemistry and mechanisms of allelopathic interactions. Agron J 88:876–885

    CAS  Google Scholar 

  • Selbo SM, Snow AA (2004) The potential for hybridization between Typha angustifolia and Typha latifolia in a constructed wetland. Aquat Bot 78:361–369. doi:10.1016/j.aquabot.2004.01.003

    Article  Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176. doi:10.1016/S0169-5347(02)02495-3

    Article  Google Scholar 

  • Smith SG (2000) Typhaceae Jussieu [as Typhae]:Cat-tail family. In: Flora of North America Editorial Committee (ed) 1993. Flora of North America north of Mexico. Oxford University Press, New York

    Google Scholar 

  • Smith SG (2004) Identification and invasiveness of North American Typha species. Summary of a paper presented on 27 September 2003 at the Invasive Species Symposium of the Natural Areas Association meeting, Madison, WI

  • Stuckey RL, Salamon DP (1987) Typha angustifolia in North America: a foreigner masquerading as a native. Ohio J Sci 87:4 and Am J Bot 74:757. In abstracts of the Ohio Academy of Sciences (April) and the Botanical Society of America (May)

  • Vilà M, Weber E, D’Antonio CM (2000) Conservation implications of invasion by plant hybridization. Biol Invasions 2:207–217. doi:10.1023/A:1010003603310

    Article  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J et al (1997) Human domination of Earth’s ecosystems. Science 277:494–499. doi:10.1126/science.277.5325.494

    Article  CAS  Google Scholar 

  • von Elert E, Juttner F (1997) Phosphorus limitation and not light controls the extracellular release of allelopathic compounds by Trichormus doliolum (Cyanobacteria). Limnol Oceanogr 42:1796–1802

    Google Scholar 

  • Wilcove DS, Rothstein D, Dubow J et al (1998) Quantifying threats to imperiled species in the United States. Bioscience 48:607–615. doi:10.2307/1313420

    Article  Google Scholar 

  • Zedler JB, Kercher S (2004) Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. CRC Crit Rev Plant Sci 23:431–452. doi:10.1080/07352680490514673

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Minnesota State University, Mankato, Department of Biological Sciences. We thank Christopher Ruhland and Ragan Callaway for their assistance throughout this research, S. Galen Smith for his help identifying Typha species, and Matt Liebman, Brian Wilsey, and two anonymous reviewers for their valuable feedback on earlier versions of this manuscript. Thanks also to Ross Behrends, Cindy Kottschade, Matthew Krna, Nate Jarchow, and Nichole Kotasek for assistance in the field and laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghann E. Jarchow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarchow, M.E., Cook, B.J. Allelopathy as a mechanism for the invasion of Typha angustifolia . Plant Ecol 204, 113–124 (2009). https://doi.org/10.1007/s11258-009-9573-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-009-9573-8

Keywords

Navigation