Skip to main content
Log in

Measuring plant dispersal: an introduction to field methods and experimental design

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The measurement of plant dispersal is vital for understanding plant distribution and abundance at different scales. However, dispersal is difficult to measure and there is a lack of guidance for researchers new to the subject. In this paper we provide advice on methods for measuring dispersal in the field and approaches to experimental design. First, we encourage clear exposition of the aims of the dispersal study and the ultimate use to which the data will be put (e.g. local dynamics, invasion processes, etc). We outline the types of dispersal exhibited by plants and emphasise that many species are dispersed by multiple processes, which are not necessarily related to putative adaptations. Few studies properly address the full range of processes by which a species is dispersed. We review methods for measuring plant dispersal, summarising the type of dispersal measured and problems with each method. We then outline the major questions about effort to be considered in sampling protocols and present an optimisation algorithm for designing dispersal studies given a suite of options, and biological and resource constraints. We propose and demonstrate a simulation modelling approach to comparing the data quality obtained by alternative experimental designs. Integrating simulation models with pilot studies offers a rapid route to improved estimation methods. We then discuss functions commonly fit to dispersal data and recommend caution as none is a priori the best description of the dispersal process. Finally, we call for a better description and understanding of dispersal kernels by: a more rigorous approach to designing dispersal measurement; better targeting of dispersal studies to particular questions; and achieving a deeper understanding of the mechanisms underlying dispersal, so that we can move from descriptions of pattern to a grasp of process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson E., Nilsson C. and Johannsson M.E. (2000). Plant dispersal in boreal rivers and its relation to the diversity of riparian flora. J. Biogeogr. 27: 1095–1106

    Google Scholar 

  • Assunção R. and Jacobi C.M. (1996). Optimal sampling design for studies of gene flow from a point source using marker genes or marked individuals. Evolution 50: 918–923

    Google Scholar 

  • Augspurger C., Hogan K.P. (1983). Wind dispersal of fruits with variable seed number in a tropical tree. Am. J. Bot. 70: 1031–1037

    Google Scholar 

  • Beerling D.J., Bailey J.P. and Conolly A.P. (1994). Fallopia japonica Houtt.; Polygonum cuspidatum. Biological flora of the British Isles. J. Ecol. 82: 959–979

    Google Scholar 

  • Bolker B.M. and Pacala S.W. (1999). Spatial moment equations for plant competition: understanding spatial strategies and the advantages of short dispersal. Am. Nat. 153: 575–602

    Google Scholar 

  • Bossard C.C. (1990). Tracing of ant-dispersed seeds – a new technique. Ecology 71: 2370–2371

    Google Scholar 

  • Box G.E.P. (1979). Robustness in the strategy of scientific model building. In: Launer R.L. and Wilkinson G.N. (eds), Robustness in Statistics. Academic Press, New York, pp. 201–236

    Google Scholar 

  • Buchan L.A.J., Padilla D.K. (1999). Estimating the probability of long-distance overland dispersal of invading aquatic species. Ecol. Appl. 9: 254–265

    Google Scholar 

  • Bullock J.M., Clarke R.T. (2000). Long distance seed dispersal by wind: measuring and modelling the tail of the curve. Oecologia 124: 506–521

    Google Scholar 

  • Bullock J.M., Moy I.L., (2004). Plants as seed traps: inter-specific interference with dispersal. Acta Oecol. 25: 35–41

    Google Scholar 

  • Bullock J.M., Moy I.L., Coulson S.J. and Clarke R.T. (2003). Habitat-specific dispersal: environmental effects on the mechanisms and patterns of seed movement in a grassland herb Rhinanthus minor. Ecography 26: 692–704

    Google Scholar 

  • Bullock J.M., Moy I.L., Pywell R., Coulson S.J., Nolan A.M. and Caswell H. (2002). Plant dispersal and colonisation processes at local and landscape scales. In: Bullock J.M., Kenward R.E., Hails R. (eds), Dispersal Ecology. Blackwell Science, Oxford, pp. 279–302

    Google Scholar 

  • Burnham K.P. and Anderson D.R. (2002). Model Selection and Inference: A Practical Information-Theoretic Approach, 2nd Edition. Springer, New York

    Google Scholar 

  • Cain M.L., Damman H. and Muir A., (1998). Seed dispersal and the Holocene migration of woodland herbs. Ecol. Monogr. 68: 325–347

    Article  Google Scholar 

  • Cain M.L., Milligan B.G. and Strand A.E. (2000). Long-distance seed dispersal in plant populations. Am. J. Bot. 87: 1217–1227

    PubMed  Google Scholar 

  • Caswell H. and Kaye T.N. (2001). Stochastic demography and conservation of an endangered perennial plant (Lomatium bradshawii) in a dynamic fire regime. Adv. Ecol. Res. 32: 1–51

    Google Scholar 

  • Caswell H., Lensink R. and Neubert M.G. (2003). Demography and dispersal: life table response experiments for invasion speed. Ecology 84: 1968–1978

    Google Scholar 

  • Chang E.R., Zozaya E.L., Kuijper D.P.J. and Bakker J.P. (2005). Seed dispersal by small herbivores and tidal water: are they important filters in the assembly of salt-marsh communities? Funct. Ecol. 19: 665–673

    Google Scholar 

  • Clark J.S. (1998). Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord. Am. Nat. 152: 204–224

    PubMed  CAS  Google Scholar 

  • Clark J.S., Horvath L. and Lewis M. (2001). On the estimation of spread rate for a biological population. Stat. Probab. Lett. 51: 225–234

    Google Scholar 

  • Clark C.J., Poulsen J.R., Bolker B.M., Connor E.F. and Parker V.T. (2005). Comparative seed shadows of bird-, monkey-, and wind-dispersed trees. Ecology 86: 2684–2694

    Google Scholar 

  • Clark J.S., Silman M., Kern R., Macklin E. and HilleRisLambers J. (1999). Seed dispersal near and far: patterns across temperate and tropical forests. Ecology 80: 1475–1494

    Google Scholar 

  • Coulson S.J., Bullock J.M., Stevenson M.J. and Pywell R.F. (2001). Colonization of grassland by sown species: dispersal versus microsite limitation in responses to management. J. Appl. Ecol. 38: 204–216

    Google Scholar 

  • Crawley M.J. and Brown S.L. (1995). Seed limitation and the dynamics of feral oilseed rape. Proc. R. Soc. London B 259: 49–54

    Google Scholar 

  • Dalling J.W., Muller-Landau H.C., Wright S.J. and Hubbell S.P. (2002). Role of dispersal in the recruitment limitation of neotropical pioneer species. J. Ecol. 90: 714–727

    Google Scholar 

  • Ehrlen J. and Eriksson O. (2003). Large-scale spatial dynamics of plants: a response to Freckleton & Watkinson. J. Ecol. 91: 316–320

    Google Scholar 

  • Ennos R.A. (2002). Inferences about spatial processes in plant populations from the analysis of molecular markers. In: Silvertown J., Antonovics J. (eds), Integrating Ecology and Evolution in a Spatial Context. Blackwell Science, Oxford, pp. 45–71

    Google Scholar 

  • Fischer S.F., Poschlod P. and Beinlich B. (1996). Experimental studies on the dispersal of plants and animals on sheep in calcareous grasslands. J. Appl. Ecol. 33: 1206–1222

    Google Scholar 

  • Forget P.M. (1996). Removal of seeds of Carapa procera (Meliaceae) by rodents and their fate in rainforest in French Guiana. J. Trop. Ecol. 12: 751–761

    Article  Google Scholar 

  • Forman J. and Kesseli R.V. (2003). Sexual reproduction in the invasive species Fallopia japonica (Polygonaceae). Am. J. Bot. 90: 586–592

    Google Scholar 

  • Forrest B.M., Brown S.N., Taylor M.D., Hurd C.L. and Hay C.H. (2000). The role of natural dispersal mechanisms in the spread of Undaria pinnatifida (Laminariales, Phaeophyceae). Phycologia 39: 547–553

    Article  Google Scholar 

  • Freckleton R.P. and Watkinson A.R. (2002). Large-scale spatial dynamics of plants: metapopulations, regional ensembles and patchy populations. J. Ecol. 90: 419–434

    Google Scholar 

  • Gaylord B., Reed D.C., Raimondi P.T., Washburn L. and McLean S.R. (2002). A physically based model of macroalgal spore dispersal in the wave and current-dominated nearshore. Ecology 83: 1239–1251

    Google Scholar 

  • Geritz S.A.H., van der Meijden E. and Metz J.A.J. (1999). Evolutionary dynamics of seed size and seedling competitive ability. Theor. Popul. Biol. 55: 324–343

    PubMed  CAS  Google Scholar 

  • Goodson J.M., Gurnell A.M., Angold P.G. and Morrissey I.P. (2003). Evidence for hydrochory and the deposition of viable seeds within winter flow-deposited sediments: The River Dove, Derbyshire, UK. River Res. Appl. 19: 317–334

    Google Scholar 

  • Gorb E. and Gorb S. (2000). Effects of seed aggregation on the removal rates of elaiosome- bearing Chelidonium majus and Viola odorata seeds carried by Formica polyctena ants. Ecol. Res. 15: 187–192

    Google Scholar 

  • Greene D.F. and Calogeropoulos C., (2002). Measuring and modelling seed dispersal of terrestrial plants. In: Bullock J.M., Kenward R.E. and Hails R.S. (eds), Dispersal Ecology. Blackwell Science, Oxford, pp 2–21

    Google Scholar 

  • Greene D.F., Canham C.D., Coates K.D. and Lepage P.T. (2004). An evaluation of alternative dispersal functions for trees. J. Ecol. 92: 758–766

    Google Scholar 

  • Greene D.F. and Johnson E.A. (1989). A model of wind dispersal of winged or plumed seeds. Ecology 702: 339–347

    Google Scholar 

  • Greene D.F. and Johnson E.A. (1992). Fruit abscission in Acer saccharinum with reference to seed dispersal. Can. J. Bot. 70: 2277–2283

    Google Scholar 

  • Greene D.F. and Johnson E.A. (1997). Secondary dispersal of tree seeds on snow. J. Ecol. 85: 329–340

    Google Scholar 

  • Grivet D., Smouse P.E. and Sork V.L. (2005). A novel approach to an old problem: tracking dispersed seeds. Mol. Ecol. 14: 3585–3595

    PubMed  Google Scholar 

  • Ha H.T., Duarte C.M., Tri N.H., Terrados J., Borum J., (2003). Growth and population dynamics during early stages of the mangrove Kandelia candel in Halong Bay, North Viet Nam. Estuar. Coast. Shelf Sci. 58: 435–444

    Google Scholar 

  • He T.H., Krauss S.L., Lamont B.B., Miller B.P. and Enright N.J. (2004). Long-distance seed dispersal in a metapopulation of Banksia hookeriana inferred from a population allocation analysis of amplified fragment length polymorphism data. Mol. Ecol. 13: 1099–1109

    PubMed  CAS  Google Scholar 

  • Higgins S.I., Nathan R. and Cain M.L. (2003). Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal? Ecology 84: 1945–1956

    Google Scholar 

  • Higgins S.I., Richardson D.M. and Cowling R.M. (2001). Validation of a spatial simulation model of a spreading alien plant population. J. Appl. Ecol. 38: 571–584

    Google Scholar 

  • Hilborn R. and Mangel M. (1997). The Ecological Detective: Confronting Models with Data. Princeton University Press, Princeton

    Google Scholar 

  • Hodkinson D.J., and Thompson K. (1997). Plant dispersal: the role of man. J. Appl. Ecol. 34: 1484–1496

    Google Scholar 

  • Holbrook K.M. and Smith T.B. (2000). Seed dispersal and movement patterns in two species of Ceratogymna hornbills in a West African tropical lowland forest. Oecologia 125: 249–257

    Google Scholar 

  • Hoppes W.G. (1988). Seedfall pattern of several species of bird-dispersed plants in an Illinois woodland. Ecology 58: 539–550

    Google Scholar 

  • Horvitz C.C. and Schemske D.W. (1994). Effects of dispersers, gaps, and predators on dormancy and seedling emergence in a tropical herb. Ecology 7: 1949–1958

    Google Scholar 

  • Jansen P.A., Bartholomeus M., Bongers F., Elzinga J.A., den Ouden J. and van Wieren S.E. (2002). The role of seed size in dispersal by a scatterhoarding rodent. In: Levey D.J., Silva W.R., Galetti M. (eds), Seed Dispersal and Frugivory: Ecology, Evolution and Conservation. CAB International, Wallingford, pp 209–226

    Google Scholar 

  • Jones F.A., Chen J., Weng G.J. and Hubbell S.P. (2005). A genetic evaluation of seed dispersal in the neotropical tree Jacaranda copaia (Bignoniaceae). Am. Nat. 166: 543–555

    PubMed  CAS  Google Scholar 

  • Jongejans E. and Schippers P. (1999). Modeling seed dispersal by wind in herbaceous species. Oikos: 99: 362–372

    Google Scholar 

  • Jongejans E. and Telenius A. (2001). Field experiments on seed dispersal by wind in ten umbelliferous species (Apiaceae). Plant Ecol. 152: 67–78

    Google Scholar 

  • Kalisz S., Hanzawa F.M., Tonsor S.J., Thiede D.A. and Voigt S. (1999). Ant-mediated seed dispersal alters pattern of relatedness in a population of Trillium grandiflorum. Ecology 80: 2620–2634

    Google Scholar 

  • Kaspari M. (1993). Removal of seeds from neotropical frugivore droppings - ant responses to seed number. Oecologia 95: 81–88

    Google Scholar 

  • Katul G.G., Porporato A., Nathan R., Siquiera M., Soons M.B., Poggi D., Horn H.S. and Levin S.A. (2005). Mechanistic analytical models for long-distance seed dispersal by wind. Am. Nat. 166: 368–381

    PubMed  CAS  Google Scholar 

  • Kenward R.E., Rushton S.P., Perrins C.M., Macdonald, D.W. and South A.B. (2002). From marking to modelling: dispersal study techniques for land vertebrates. In: Bullock J.M., Kenward R.E., Hails R.S. (eds), Dispersal Ecology. Blackwell Science, Oxford, pp 50–71

    Google Scholar 

  • Klinkhamer P.G.L., de Jong T.J. and van der Meijden E. (1988). Production, dispersal and predation of seeds in the biennial Cirsium vulgare. J. Ecol. 76: 403–414

    Google Scholar 

  • Kot M., Lewis M.A. and van den Driessche P. (1996). Dispersal data and the spread of invading organisms. Ecology 77: 2027–2042

    Google Scholar 

  • Latta R.G., Linhart Y.B., Fleck D. and Elliot M. (1998). Direct and indirect estimates of seed versus pollen movement within a population of ponderosa pine. Evolution 52: 61–67

    Google Scholar 

  • Lewis M.A., Neubert M.G., Caswell H., Clark J.S. and Shea, K. in press. A guide to calculating discrete-time invasion rates from data. In: Cadotte M., McMahon S. and Fukami T. (eds), Conceptual Ecology and Invasions Biology: Reciprocal Approaches to Nature. Kluwer Academic Press, Dordrecht

  • MacIsaac H.J., Robbins T.C. and Lewis M.A., (2002). Biological invasions of aquatic habitats in Europe and the Great Lakes. Modeling ships’ ballast water as invasion threat to the Great Lakes. Canadian Journal of Fisheries and Aquatic Science 59: 1245–1256

    Google Scholar 

  • Manly B.F.J. (1997). Randomization, Bootstrap and Monte Carlo Methods in Biology, 2nd Edition. Chapman & Hall, London

    Google Scholar 

  • Menges E.S. (2000). Population viability analyses in plants: challenges and opportunities. Trends Ecol. Evol. 15: 51–56

    PubMed  Google Scholar 

  • Merritt D.M. and Wohl E.E. (2002). Processes governing hydrochory along rivers: hydraulics, hydrology and dispersal phenology. Ecol. Appl. 12: 1071–1087

    Google Scholar 

  • Middleton B.A. (1995). Sampling devices for the measurement of seed rain and hydrochory in rivers. Bull. Torrey Bot. nical Club 122: 152–155

    Google Scholar 

  • Murray K.G. (1988). Avian seed dispersal of three neotropical gap-dependent plants. Ecol. Monogr. 58: 271–298

    Google Scholar 

  • Nathan R. (2005). Long-distance dispersal research: building a network of yellow brick roads. Divers. Distrib. 11: 125–130

    Google Scholar 

  • Nathan R., Katul G.G., Horn H.S., Thomas S.M., Oren R., Avissar R., Pacala S.W. and Levin S.A. (2002). Mechanisms of long-distance dispersal of seeds by wind. Nature 418: 409–413

    PubMed  CAS  Google Scholar 

  • Nathan R., Perry G., Cronin J.T., Strand A.E. and Cain M.L. (2003). Methods for estimating long-distance dispersal. Oikos 103: 261–273

    Google Scholar 

  • Neubert M.G. and Parker I.M. (2004). Projecting rates of spread for invasive species. Risk Anal. 24: 817–831

    PubMed  Google Scholar 

  • Ohkawara K. and Higashi S. (1994). Relative importance of ballistic and ant dispersal in two diplochorous Viola species (Violaceae). Oecologia 100: 135–140

    Google Scholar 

  • Ouborg N.J., Piquot Y. and van Groenedael J.M. (1998). Population genetics, molecular markers and the study of dispersal in plants. J. Ecol. 87: 551–568

    Google Scholar 

  • Peakall R. and Beattie A.J. (1995). Does ant dispersal of seeds in Sclerolaena diacantha (Chenopodiaceae) generate local spatial genetic structure?. Heredity 75: 351–361

    Google Scholar 

  • Pielaat A., Lewis M.A., Lele S. and de Camino Beck T. 2006. Sequential sampling designs for catching the tail of dispersal kernels. Ecol. Model. 190: 205–222

    Google Scholar 

  • Portnoy S. and Willson M.F. (1993). Seed dispersal curves - behavior of the tail of the distribution. Evolut. Ecol. 7: 25–44

    Google Scholar 

  • Raybould A.F., Clarke R.T., Bond J.M., Welters R.E. and Gliddon C. (2002). Inferring patterns of dispersal from allele frequency data. In: Bullock J.M., Kenward R.E. and Hails R. (eds), Dispersal Ecology. Blackwell Science, Oxford, pp. 89–111

    Google Scholar 

  • Ribbens E., Silander J.A.J. and Pacala S.W. (1994). Seedling recruitment in forests: calibrating models to predict patterns of tree seedling dispersion. Ecology 75: 1794–1806

    Google Scholar 

  • Richardson B.A., Klopfenstein N.B. and Brunsfeld S.J. (2002). Assessing Clark’s nutcracker seed-caching flights using maternally inherited mitochondrial DNA of whitebark pine. Can. J. For. Res. 32: 1103–1107

    Google Scholar 

  • Ridley H.N. (1930). The Dispersal of Plants throughout the World. L. Reeve & Co. Ltd, Ashford, Kent

    Google Scholar 

  • Ronsheim M.L. (1994). Dispersal distances and predation rates of sexual and asexual propagules of Allium vineale L. Am. Midland Nat. 131: 55–64

    Google Scholar 

  • Schippers P., Jongejans E., (2005). Release thresholds strongly determine the range of seed dispersal by wind. Ecol. Model. 185: 93–103

    Google Scholar 

  • Schurr F.M., Bond W.J., Midgley G.F. and Higgins S.I. (2005). A mechanistic model for secondary seed dispersal by wind and its experimental validation. J. Ecol. 93: 1017–1028

    Google Scholar 

  • Scott S.E. and Wilkinson M.J. (1999). Low probability of chloroplast movement from oilseed rape (Brassica napus) into wild Brassica rapa. Nat. Biotechnol. 17: 390–392

    PubMed  CAS  Google Scholar 

  • Shigesada N. and Kawasaki K. (2002). Invasion and range expansion of species: effects of long distance dispersal. In: Bullock J.M., Kenward R.E. and Hails R.S. (eds), Dispersal Ecology. Blackwell Science, Oxford, pp. 350–373

    Google Scholar 

  • Silvertown J. and Bullock J.M. (2003). Do seedlings in gaps interact? A field test of ESS seed size models. Oikos 101: 499–504

    Google Scholar 

  • Skarpaas O., Stabbetorp E., Rønning I. and Svennungsen T.O. (2004). How far can a hawk’s beard fly? Measuring and modeling the dispersal of Crepis praemorsa. J. Ecol. 92: 747–757

    Google Scholar 

  • Skarpaas O., Shea K. and Bullock J.M. (2005). Optimizing dispersal study design by Monte Carlo simulation. J. Appl. Ecol. 42: 731–739

    Google Scholar 

  • Soons M.B., Heil G.W., Nathan R. and Katul G.G. (2004). Determinants of long-distance seed dispersal by wind in grasslands. Ecology 85: 3056–3068

    Google Scholar 

  • Spijkerboer H.P., Beniers J.E., Jaspers D., Schouten H.J., Goudriaan J., Rabbinge R. and van der Werf W. (2002). Ability of the Gaussian plume model to predict and describe spore dispersal over a potato crop. Ecol. Model. 155: 1–18

    Google Scholar 

  • Stamp N.E. and Lucas J.R. (1983). Ecological correlates of explosive seed dispersal. Oecologia 59: 272–278

    Google Scholar 

  • Stedman R., Diefenbach D.R., Swope C.B., Finley J.C., Luloff A.E., Zinn H.C., San Julian G.J. and Wang G.A. (2004). Integrating wildlife and human-dimensions research methods to study hunters. J. Wildlife Manage. 68: 762–773

    Google Scholar 

  • Stieglitz T. and Ridd P.V. (2001). Trapping of mangrove propagules due to density-driven secondary circulation in the Normanby River estuary, NE Australia. Mar. Ecol. Prog. Ser. 211: 131–142

    Google Scholar 

  • Stokes K.E., Bullock J.M. and Watkinson A.R. (2004). Population dynamics across a parapatric range boundary: Ulex gallii and Ulex minor. J. Ecol. 92: 142–155

    Google Scholar 

  • Stoyan D. and Wagner S. (2001). Estimating the fruit dispersion of anemochorous forest trees. Ecol. Model. 145: 35–47

    Google Scholar 

  • Sun C., Ives A.R., Kraeuter H.J. and Moermond T.C. (1997). Effectiveness of three turacos as seed dispersers in a tropical montane forest. Oecologia 112: 94–103

    Google Scholar 

  • Sundberg S. and Rydin H. (2000). Experimental evidence for a persistent spore bank in Sphagnum. New Phytol. 148: 105–116

    Google Scholar 

  • Tackenberg O. (2003). Modeling long-distance dispersal of plant diaspores by wind. Ecol. Monogr. 73: 173–189

    Google Scholar 

  • Thomas J.R., Gibson D.J. and Middleton B.A. (2005). Water dispersal of vegetative bulbils of the invasive exotic Dioscorea oppositifolia L. in southern Illinois. J. Torrey Bot. Soc. 132: 187–196

    Google Scholar 

  • Thomas C.D. and Kunin W.E. (1999). The spatial structure of populations. J. Anim. Ecol. 68: 647–657

    Google Scholar 

  • Uriarte M., Canham C.D., Thompson J., Zimmerman J.K. and Brokaw N. (2005). Seedling recruitment in a hurricane-driven tropical forest: light limitation, density-dependence and the spatial distribution of parent trees. J. Ecol. 93: 291–304

    Google Scholar 

  • van der Pijl L. (1982). Principles of Dispersal in Higher Plants, 3rd Edition. Springer-Verlag, Berlin

    Google Scholar 

  • Vanderwall S.B. (1993). Cache site selection by chipmunks (Tamias spp) and its influence on the effectiveness of seed dispersal in jeffrey pine (Pinus jeffreyi). Oecologia 96: 246–252

    Google Scholar 

  • Verdu M. and Garcia Fayos P. (1996). Nucleation processes in a Mediterranean bird-dispersed plant. Funct. Ecol. 10: 275–280

    Google Scholar 

  • Vickery R.K., Phillips D.R. and Wonsavage P.R., (1986). Seed dispersal in Mimulus guttatus by wind and deer. Am. Midland Nat. 116: 206–208

    Google Scholar 

  • Wagner S., Walder K., Ribbens E. and Zeibig A. (2004). Directionality in fruit dispersal models for anemochorous forest trees. Ecol. Model. 179: 487–498

    Google Scholar 

  • Watkinson A.R. and Gill J.A. (2002). Climate change and dispersal. In: Bullock J.M., Kenward R.E. and Hails R.S. (eds), Dispersal Ecology. Blackwell Publishing, Oxford, pp. 410–429

    Google Scholar 

  • Wehncke E.V., Valdez C.N. and Dominguez C.A. (2004). Seed dispersal and defecation patterns of Cebus capucinus and Alouatta palliata: consequences for seed dispersal effectiveness. J. Trop. Ecol. 20: 535–543

    Google Scholar 

  • Wei H., Feng C., Meyer E. and Lee J. (2005). Video-capture-based approach trajectory data for to extract multiple vehicular traffic modeling. J. Transport. Eng. 131: 496–505

    Google Scholar 

  • Weiblen G.D. and Thomson J.D. (1995). Seed dispersal in Erythronium grandiflorum (Liliaceae). Oecologia 102: 211–219

    Google Scholar 

  • Wenny D.G. (2002). Effects of human handling of seeds on seed removal by rodents. Am. Midland Nat. 147: 404–408

    Google Scholar 

  • Westcott D.A., Bentrupperbaumer J., Bradford M.G. and McKeown A. (2005). Incorporating patterns of disperser behaviour into models of seed dispersal and its effects on estimated dispersal curves. Oecologia 146: 57–67

    PubMed  Google Scholar 

  • Willson M.F. (1993). Dispersal mode, seed shadows, and colonization patterns. Vegetatio 108: 261–280

    Google Scholar 

  • Willson M.F. and Traveset A. (2000). The ecology of seed dispersal. In: Fenner M. (eds), Seeds: The Ecology of Regeneration in Plant Communities, 2nd Edition. CABI, Wallingford, pp. 85–107

    Google Scholar 

Download references

Acknowledgements

This paper was initiated at the NCEAS working group on demography and dispersal and we thank especially Janneke HilleRisLambers, Carol Horvitz and Brian Beckage for useful discussion. Andy Stephenson, and the Mortensen-Shea dispersal discussion group provided valuable comments on earlier versions of the as did two referees. Part of this work was supported by NERC Grant NE/B503141/1 to J. Bullock, by USDA-CSREES (Biology of Weedy and Invasive Plants) NRI Grant #2002-35320-12289 and NSF Grant #DEB-0315860 to K. Shea, and by NRC Grant 161484/V10 to O. Skarpaas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Bullock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bullock, J.M., Shea, K. & Skarpaas, O. Measuring plant dispersal: an introduction to field methods and experimental design. Plant Ecol 186, 217–234 (2006). https://doi.org/10.1007/s11258-006-9124-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-006-9124-5

Keywords

Navigation