Skip to main content
Log in

Light microhabitats, growth and photosynthesis of an epiphytic bromeliad in a tropical dry forest

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

In the tropical dry forest of Dzibilchaltún, Yucatan, Mexico, light microhabitats, tissue acidity changes, chlorophyll fluorescence and growth were investigated for the epiphytic bromeliad Tillandsia brachycaulos Schltdl. Most individuals occurred in sites between 20 and 60% of the height of the tree, and directly on the main trunk or branches closed to the main trunk. During the dry season, individuals received about nine times more photon flux density (PFD) than during the rainy season. Individuals that occurred under 30–59% of the daily ambient PFD showed greater leaf length increase and monthly leaf production, and produced more flowers than individuals in the brighter (>60% of ambient PFD) and the darker (11–29% of ambient PFD) light microhabitats. Well-watered plants acclimated to deep shade (6% of ambient PFD) showed values of tissue acidity similar to plants under higher light treatments. Well-watered plants under 60% of daily ambient PFD showed low values of maximum quantum efficiency at midday during most of the year but showed similar values of tissue acidity than plants under 6 and 30% of ambient PFD. Leaf temperatures of plants in low sites within the canopy and on the forest floor were significantly higher than the air during about 1 h, indicating that those plants could not dissipate the excess of heat. Individuals located in the most shaded microhabitats could also receive less amount of water from rainfall and dew. Therefore, it would be less damaging for this epiphytic bromeliad to occur in the most exposed microhabitats than in the most shaded microhabitats in this tropical dry forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W.W. Adams SuffixIII B. Demmig-Adams (1996) Energy dissipation and the xanthophyll cycle in CAM plants K. Winter J.A.C. Smith (Eds) Crassulacean Acid Metabolism: Biochemistry, Ecophysiology and Evolution Springer Berlin 97–114

    Google Scholar 

  2. J.L. Andrade (2003) ArticleTitleDew deposition on epiphytic bromeliad leaves: an important event in a Mexican tropical dry deciduous forest J. Trop. Ecol. 19 479–488 Occurrence Handle10.1017/S0266467403003535

    Article  Google Scholar 

  3. J.L. Andrade P.S. Nobel (1996) ArticleTitleHabitatCO2 uptake and growth for the CAM epiphytic cactus Epiphyllum phyllanthus in a Panamanian tropical forest J. Trop. Ecol. 12 291–306

    Google Scholar 

  4. J.L. Andrade P.S. Nobel (1997) ArticleTitleMicrohabitats and water relations of epiphytic cacti and ferns in a lowland neotropical forest Biotropica 29 261–270

    Google Scholar 

  5. D.H. Benzing (1990) Vascular Epiphytes General Biology and Related Biota Cambridge University Press New York

    Google Scholar 

  6. D.H. Benzing (2000) Bromeliaceae: Profile of an Adaptive Radiation Cambridge University Press Cambridge

    Google Scholar 

  7. M.D. García-Suárez V. Rico-Gray H. Serrano (2003) ArticleTitleDistribution and abundance of Tillandsia spp. (Bromeliaceae) in the Zapotitlán Valley, PueblaMexico Plant Ecol. 166 207–215 Occurrence Handle10.1023/A:1023204023070

    Article  Google Scholar 

  8. A.H. Gentry C.H. Dodson (1987) ArticleTitleDiversity and biogeography of neotropical vascular epiphytes Ann. Missouri Bot. Garden 74 205–233

    Google Scholar 

  9. J.A. González-Iturbe I. Olmsted F. Tun-Dzul (2002) ArticleTitleTropical dry forest recovery after long-term Henequen (sisal, Agave fourcroydes Lem.) plantation in northern Yucatan, Mexico Forest Ecol. Manage. 167 67–82 Occurrence Handle10.1016/S0378-1127(01)00689-2

    Article  Google Scholar 

  10. E.A. Graham J.L. Andrade (2004) ArticleTitleDrought tolerance associated with vertical stratification of two co-occurring epiphytic bromeliads in a tropical dry forest Am. J. Bot. 91 699–706

    Google Scholar 

  11. H. Griffiths U. Lüttge K.-H. Stimmel C.E. Crook N.M. Griffths J.A.C. Smith (1986) ArticleTitleComparative ecophysiology of CAM and C3 bromeliads. III. Environmental influences on CO2 assimilation and transpiration PlantCell Environ. 9 385–393

    Google Scholar 

  12. H. Griffiths K. Maxwell (1999) ArticleTitleIn memory of C.S. Pittendrigh: does exposure in forest canopy relate to photoprotective strategies in epiphytic bromeliads? Funct. Ecol. 13 15–23 Occurrence Handle10.1046/j.1365-2435.1999.00291.x

    Article  Google Scholar 

  13. P. Hietz O. Briones (1998) ArticleTitleCorrelation between water relations and within-canopy distribution of epiphytic ferns in a Mexican cloud forest Oecologia 114 305–316 Occurrence Handle10.1007/s004420050452

    Article  Google Scholar 

  14. P. Hietz J. Ausserer G. Schindler (2002) ArticleTitleGrowthmaturation and survival of epiphytic bromeliads in a Mexican humid montane forest J. Trop. Ecol. 18 177–191 Occurrence Handle10.1017/S0266467402002122

    Article  Google Scholar 

  15. D. Johansson (1974) ArticleTitleEcology of vascular epiphytes in West African rain forest Acta Phytogeogr. Suecica 59 1–129

    Google Scholar 

  16. H. Lambers F.S. Chapin SuffixIII T.L. Pons (1998) Plant Physiological Ecology Springer-Verlag New York

    Google Scholar 

  17. S. Laube G. Zotz (2003) ArticleTitleWhich abiotic factors limit vegetative growth in a vascular epiphyte Funct. Ecol. 17 598–604 Occurrence Handle10.1046/j.1365-2435.2003.00760.x

    Article  Google Scholar 

  18. C.E. Martin (1994) ArticleTitlePhysiological ecology of the Bromeliaceae Bot. Rev. 60 1–82

    Google Scholar 

  19. C.E. Martin K. McLeod C. Eades P. Pitzer (1985) ArticleTitleMorphological and physiological responses to irradiance in the CAM epiphyte Tillandsia usneoides L. (Bromeliaceae) Bot. Gazette 146 489–494 Occurrence Handle10.1086/337553

    Article  Google Scholar 

  20. C.E. Martin A. Tüffers W. Herppich D. von Willert (1999) ArticleTitleUtilization and dissipation of absorbed light energy in the epiphytic crassulacean acid metabolism bromeliad Tillandsia ionantha Int. J. Plant Sci. 160 307–313 Occurrence Handle10.1086/314130 Occurrence Handle1:CAS:528:DyaK1MXivF2ht7Y%3D

    Article  CAS  Google Scholar 

  21. C. Maxwell H. Griffths A.M. Borland A.J. Young M.S.J. Broadmeadow C.M. Fordham (1995) ArticleTitleShort-term photosynthetic responses of the C3-CAM epiphyte Guzmania monostachya var. monostachya to tropical seasonal transitions under field conditions Aust. J. Plant Physiol. 22 771–781 Occurrence Handle1:CAS:528:DyaK2MXpt12hs78%3D

    CAS  Google Scholar 

  22. E. Medina E. Olivares M. Díaz (1986) ArticleTitleWater stress and light intensity effects on growth and nocturnal acid accumulation in a terrestrial CAM bromeliad (Bromelia humilis Jacq.) under natural conditions Oecologia 70 441–446 Occurrence Handle10.1007/BF00379509

    Article  Google Scholar 

  23. E. Medina E. Olivares M. Díaz N. van der Merwe (1989) ArticleTitleMetabolismo ácido de crasuláceas en bosques húmedos tropicales Monogr. Syst. Bot. Missouri Bot. Garden 27 56–67

    Google Scholar 

  24. D. Mondragón (2000) Dinámica Poblacional de Tillandsia brachycaulos en el Parque Nacional de Dzibilchaltún Centro de Investigación Científica de Yucatán MéridaYucatán, México

    Google Scholar 

  25. D. Mondragón R. Durán I. Ramírez I. Olmsted (1999) ArticleTitlePopulation dynamics of Tillandsia brachycaulos Schltdl. (Bromeliaceae) in Dzibilchaltun National Park, Yucatán Selbyana 20 250–255

    Google Scholar 

  26. J. Nieder S. Engwald M. Klauwun W. Barthlott (2000) ArticleTitleSpatial distribution of vascular epiphytes (including hemiepiphytes) in a lowland Amazonian rain forest (Surumoni crane plot) of southern Venezuela Biotropica 32 385–396

    Google Scholar 

  27. J. Nieder J. Prosperi G. Michaloud (2001) ArticleTitleEpiphytes and their contribution to canopy diversity Plant Ecol. 153 51–63 Occurrence Handle10.1023/A:1017517119305

    Article  Google Scholar 

  28. P.S. Nobel (1988) Environmental Biology of Agaves and Cacti Cambridge University Press Nueva York

    Google Scholar 

  29. P.S. Nobel (1991) Physicochemical and Environmental Plant Physiology Academic Press San Diego

    Google Scholar 

  30. R. Orellana (1999) Evaluación climática A. García J. Córdova (Eds) Atlas de Procesos Territoriales de Yucatán Facultad de ArquitecturaUniversidad Autónoma de Yucatán MéridaYucatán, Mexico

    Google Scholar 

  31. J. Pett-Ridge W.L. Silver (2002) ArticleTitleSurvival, growthand ecosystem dynamics of displaced bromeliads in a montane tropical forest Biotropica 34 211–224

    Google Scholar 

  32. W. Pfitsch A.P. Smith (1988) ArticleTitleGrowth and photosynthesis of Aechmea magdalenaea terrestrial CAM plant in a tropical moist forestPanama J. Trop. Ecol. 4 199–207

    Google Scholar 

  33. C.S. Pittendrigh (1948) ArticleTitleThe bromeliad–Anopheles–malaria complex in Trinidad. I. The bromeliad flora Evolution 2 58–89

    Google Scholar 

  34. B.A. Richardson M.J. Richardson F.N. Scatena W.H. McDowell (2000) ArticleTitleEffects of nutrient availability and other elevational changes on bromeliad populations and their invertebrate communities in a humid tropical forest in Puerto Rico J. Trop. Ecol. 16 167–188 Occurrence Handle10.1017/S0266467400001346

    Article  Google Scholar 

  35. J.B. Skillman K. Winter (1997) ArticleTitleHigh photosynthetic capacity in a shade tolerant Crassulacean acid metabolism plant: implications for sunflecks usenonphotochemical energy dissipation, and susceptibility to photoinhibition Plant Physiol. 113 441–450 Occurrence Handle1:CAS:528:DyaK2sXht1Cks78%3D Occurrence Handle12223618

    CAS  PubMed  Google Scholar 

  36. L.B. Smith R.J. Downs (1977) Flora Neotropica Hafner Press New York 663–1492

    Google Scholar 

  37. H. ter Steege J.H.C. Cornelissen (1989) ArticleTitleDistribution and ecology of vascular epiphytes in Lowland Rain Forest of Guayana Biotropica 21 331–339

    Google Scholar 

  38. L.B. Thien A.S. Bradburn A.L. Welden (1982) The woody vegetation of Dzibilchaltun, a Maya archeological site in Northwest Yucatan, Mexico Middle American Research InstituteTulane University New Orleans

    Google Scholar 

  39. D.T. Tissue P.S. Nobel (1990) ArticleTitleCarbon relations of flowering in a semalparous clonal desert perennial Ecology 71 273–281

    Google Scholar 

  40. M.T. Tyree T.R. Wilmot (1990) ArticleTitleErrors in the calculations of evaporation and leaf conductance in steady-state porometry: the importance of accurate measurement of leaf temperature Can. J. Forest Res. 20 1031–1035

    Google Scholar 

  41. K. Winter B.J. Wallace G.C. Stocker Z. Roksandic (1983) ArticleTitleCrassulacean acid metabolism in Australian vascular epiphytes and some related species Oecologia 57 129–141 Occurrence Handle10.1007/BF00379570

    Article  Google Scholar 

  42. K. Winter C.B. Osmond K.T. Hubick (1986) ArticleTitleCrassulacean acid metabolism in the shade. Studies on an epiphytic fern, Pyrrosia longifoliaother rainforest species from Australia Oecologia 68 224–230 Occurrence Handle10.1007/BF00384791

    Article  Google Scholar 

  43. J. Zar (1974) Biostatistical Analysis Prentice-Hall Englewood Cliffs, NJ

    Google Scholar 

  44. G. Zotz (1995) ArticleTitleHow fast does an epiphyte grow? Selbyana 16 150–154

    Google Scholar 

  45. G. Zotz (1998) ArticleTitleDemography of the epiphytic orchidDimerandra emarginata J. Trop. Ecol. 14 725–741 Occurrence Handle10.1017/S0266467498000534

    Article  Google Scholar 

  46. G. Zotz J.L. Andrade (1998) ArticleTitleWater relations of two co-occurring epiphytic bromeliads J. Plant Physiol. 152 545–554 Occurrence Handle1:CAS:528:DyaK1cXjtlyhsbc%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cervantes, S.E., Graham, E.A. & Andrade, J.L. Light microhabitats, growth and photosynthesis of an epiphytic bromeliad in a tropical dry forest. Plant Ecol 179, 107–118 (2005). https://doi.org/10.1007/s11258-004-5802-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-004-5802-3

Keywords

Navigation