Skip to main content

Advertisement

Log in

Plant species richness, vegetation structure and soil resources of urban brownfield sites linked to successional age

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Brownfield sites contribute significantly to urban biodiversity due to their high spatio-temporal dynamics and their transient character. Plant species richness is, among other factors, contingent on vegetation structure. In this study, we examined plant species richness, vegetation height, vegetation density and soil parameters of a chronosequence of urban brownfield sites in Bremen and Berlin, Germany. These parameters were linked to successional age using single and multiple linear regression. Most biotic and abiotic variables differed significantly between sites with and without brick rubble in the soil, indicating a strong effect of site history on vegetation development. Soil parameters of the sites were not clearly linked to site age. Vegetation height and density increased significantly over time. Additionally, height and density increased with soil phosphorus content and water permeability of the soil, whilst plant available water only contributed to the model of vegetation density. Species richness increased with vegetation height but decreased with vegetation density. This indicates that species richness is maximised when a community comprises a mixture of early and mid-successional species. The results suggest that high plant species richness on sandy brownfield sites can be achieved by strong disturbances at an interval of 5 (±2) years. However, limiting soil resources can prolong this interval considerably. Management aiming to maximise plant species richness in urban brownfield sites should therefore take into account the interplay between soil resources and site age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. In: Aerts R, Chapin FS (ed) Advances in ecological research, vol 30. pp 1–67

  • Angold PG, Sadler JP, Hill MO, Pullin A, Rushton S, Austin K et al (2006) Biodiversity in urban habitat patches. Sci Total Environ 360:196–204 doi:10.1016/j.scitotenv.2005.08.035

    Article  PubMed  CAS  Google Scholar 

  • Anon. [Arbeitsgruppe-Boden] (1996) Bodenkundliche Kartieranleitung (KA4). Hannover (DE)

  • Backhaus K, Erichson B, Plinke W, Weiber R (2003) Multivariate analysemethoden. Springer, Berlin

    Google Scholar 

  • Bakker JP, Olff H, Willems JH, Zobel M (1996) Why do we need permanent plots in the study of long-term vegetation dynamics? J Veg Sci 7:147–155 doi:10.2307/3236314

    Article  Google Scholar 

  • Bautista-Cruz A, del Castillo RF (2005) Soil changes during secondary succession in a tropical montane cloud forest area. Soil Sci Soc Am J 69:906–914 doi:10.2136/sssaj2004.0130

    Article  CAS  Google Scholar 

  • Bazzaz FA (1996) Plants in changing environments. Cambridge University Press, Cambridge

    Google Scholar 

  • Blatt SE, Crowder A, Harmsen R (2005) Secondary succession in two south-eastern Ontario old-fields. Plant Ecol 177:25–41 doi:10.1007/s11258-005-2018-0

    Article  Google Scholar 

  • Bornkamm R (1986) Ruderal succession starting at different seasons. Acta Societatis Botanicorum Pol 55:403–419

    Google Scholar 

  • Bornkamm R, Hennig U (1982) Experimental ecological study of succession of ruderal plant-communities on different soils. 1. Floristic composition of the vegetation. Flora 172:267–316

    Google Scholar 

  • Bungard RA, Zipperlen SA, Press MC, Scholes JD (2002) The influence of nutrients on growth and photosynthesis of seedlings of two rainforest dipterocarp species. Funct Plant Biol 29:505–515 doi:10.1071/PP01137

    Article  Google Scholar 

  • Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–497 doi:10.1038/17276

    Article  CAS  Google Scholar 

  • Chapin FS, Walker LR, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64:149–175 doi:10.2307/2937039

    Article  Google Scholar 

  • Chapin FS, Mooney HA, Matson PA (2002) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  • Cook WM, Yao J, Foster BL, Holt RD, Patrick LB (2005) Secondary succession in an experimentally fragmented landscape: community patterns across space and time. Ecology 86:1267–1279 doi:10.1890/04-0320

    Article  Google Scholar 

  • De Deyn GB, Raaijmakers CE, Van der Putten WH (2004) Plant community development is affected by nutrients and soil biota. J Ecol 92:824–834 doi:10.1111/j.0022-0477.2004.00924.x

    Article  Google Scholar 

  • Deutscher Wetterdienst (2006) Mean climate values for the period 1961 to 1990. http://www.dwd.de/de/FundE/Klima/KLIS/daten/online/nat/index_mittelwerte.htm.07-11-2006

  • DVWK [Deutscher Verband für Wasserwirtschaft und Kulturbau] (1996) Ermittlung der Verdunstung von Land-und Wasserflächen. Merkblätter zur Wasserwirtschaft 238. Wirtschafts und Verl.-Ges. Gas Wasser, Bonn

  • Effland WR, Pouyat RV (1997) The genesis, classification, and mapping of soils in urban areas. Urban Ecosyst 1:217–228 doi:10.1023/A:1018535813797

    Article  Google Scholar 

  • Fiala K, Tuma I, Holub P, Tesarova M, Jandak J, Pavkova A (2001) Importance of grass cover in reduction of negative processes in soil affected by air pollution. Rostlinna Vyroba 47:377–382

    CAS  Google Scholar 

  • Foster BL, Tilman D (2000) Dynamic and static views of succession: testing the descriptive power of the chronosequence approach. Plant Ecol 146:1–10 doi:10.1023/A:1009895103017

    Article  Google Scholar 

  • Gilbert OL (1989) The ecology of urban habitats. Chapman and Hall, London

    Google Scholar 

  • Gough L, Shaver GR, Carroll J, Royer DL, Laundre JA (2000) Vascular plant species richness in Alaskan arctic tundra: the importance of soil pH. J Ecol 88:54–66 doi:10.1046/j.1365-2745.2000.00426.x

    Article  Google Scholar 

  • Grime JP (1974) Vegetation classification by reference to strategies. Nature 250:26–31 doi:10.1038/250026a0

    Article  Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties. Wiley, Chichester (UK)

    Google Scholar 

  • Härdtle W, von Oheimb G, Westphal C (2003) The effects of light and soil conditions on the species richness of the ground vegetation of deciduous forests in northern Germany (Schleswig–Holstein). For Ecol Manage 182:327–338 doi:10.1016/S0378-1127(03)00091-4

    Article  Google Scholar 

  • Hirzel A, Guisan A (2002) Which is the optimal sampling strategy for habitat suitability modelling? Ecol Modell 157:329–339 doi:10.1016/S0304-3800(02)00203-X

    Article  Google Scholar 

  • Horn R, Taubner H (1997) Wasser- und Lufthaushalt. In: Blume HP, Schleuß U (eds) Bewertung anthropogener Stadtböden. Schriftenreihe Institut für Pflanzenernährung und Bodenkunde Universität Kiel 38:32–65

  • Isermann M (2005) Soil pH and species diversity in coastal dunes. Plant Ecol 178:111–120 doi:10.1007/s11258-004-2558-8

    Article  Google Scholar 

  • Kleyer M, Biedermann R, Henle K, Poethke HJ, Poschlod P, Schröder B et al (2007) Mosaic cycles in agricultural landscapes of Central Europe. Basic Appl Ecol 8:295–309 doi:10.1016/j.baae.2007.02.002

    Article  Google Scholar 

  • Knops JMH, Tilman D (2000) Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment. Ecology 81:88–98

    Article  Google Scholar 

  • Korzeniak J (2005) Species richness and diversity related to anthropogenic soil disturbance in abandoned meadows in the Bieszczady Mts. (Eastern Carpathians). Acta Soc Bot Pol 74:65–71

    CAS  Google Scholar 

  • Kühn I, Brandl R, Klotz S (2004) The flora of German cities is naturally species rich. Evol Ecol Res 6:749–764

    Google Scholar 

  • Muratet A, Machon N, Jiguet F, Moret J, Porcher E (2007) The role of urban structures in the distribution of wasteland flora in the Greater Paris area, France. Ecosystems (N Y, Print) 10:661–671 doi:10.1007/s10021-007-9047-6

    Article  Google Scholar 

  • Nagler A, Cordes H (1993) Atlas der gefährdeten und seltenen Farn- und Blütenpflanzen im Land Bremen mit Auswertung für den Arten und Biotopschutz. Abh Naturwissenschaftlichen Vereins Bremen 42:580

    Google Scholar 

  • Niemelä J (1999) Is there a need for a theory of urban ecology? Urban Ecosyst 3:57–65 doi:10.1023/A:1009595932440

    Article  Google Scholar 

  • Otto R, Krusi BO, Burga CA, Fernandez-Palacios JM (2006) Old-field succession along a precipitation gradient in the semi-arid coastal region of Tenerife. J Arid Environ 65:156–178 doi:10.1016/j.jaridenv.2005.07.005

    Article  Google Scholar 

  • Pauchard A, Aguayo M, Pena E, Urrutia R (2006) Multiple effects of urbanization on the biodiversity of developing countries: the case of a fast-growing metropolitan area (Concepcion, Chile). Biol Conserv 127:272–281 doi:10.1016/j.biocon.2005.05.015

    Article  Google Scholar 

  • Pickett STA (1989) Space-for-time substitution as an alternative to long-term studies. In: Likens GE (ed) Long-term studies in Ecology. Springer, New York, pp 110–135

    Google Scholar 

  • Pickett STA, Cadenasso ML, Bartha S (2001) Implications from the Buell–Small succession study for vegetation restoration. Appl Veg Sci 4:41–52

    Article  Google Scholar 

  • Prach K, Pysek P, Bastl M (2001) Spontaneous vegetation succession in human-disturbed habitats: a pattern across seres. Appl Veg Sci 4:83–88

    Article  Google Scholar 

  • Pysek P, Chocholouskova Z, Pysek A, Jarosik V, Chytry M, Tichy L (2004) Trends in species diversity and composition of urban vegetation over three decades. J Veg Sci 15:781–788 doi:10.1658/1100-9233(2004)015[0781:TISDAC]2.0.CO;2

    Google Scholar 

  • Radeloff VR, Mladenoff DJ, Boyce MS (2000) A historical perspective and future outlook on landscape scale restoration in the Northwest Wisconsin Pine Barrens. Restor Ecol 8:119–126 doi:10.1046/j.1526-100x.2000.80018.x

    Article  Google Scholar 

  • Rebele F (1994) Urban ecology and special features of urban ecosystems. Glob Ecol Biogeogr Lett 4:173–187

    Article  Google Scholar 

  • Rebele F, Lehmann C (2002) Restoration of a landfill site in Berlin, Germany by spontaneous and directed succession. Restor Ecol 10:340–347 doi:10.1046/j.1526-100X.2002.01026.x

    Article  Google Scholar 

  • Richter DD, Markewitz D, Wells CG, Allen HL, April R, Heine PR et al (1994) Soil chemical change during 3 decades in an old-field Loblolly-Pine (Pinus taeda L) ecosystem. Ecology 75:1463–1473 doi:10.2307/1937469

    Article  Google Scholar 

  • Ricketts T, Imhoff M (2003) Biodiversity, urban areas, and agriculture: Locating priority ecoregions for conservation. Conservation Ecology 8

  • Rudner M, Biedermann R, Schröder B, Kleyer M (2007) Integrated grid based ecological and economic (INGRID) landscape model—a tool to support landscape management decisions. Environ Model Softw 22:177–187 doi:10.1016/j.envsoft.2005.07.016

    Article  Google Scholar 

  • Schaffers AP (2002) Soil, biomass, and management of semi-natural vegetation—Part II. Factors controlling species diversity. Plant Ecol 158:247–268 doi:10.1023/A:1015545821845

    Article  Google Scholar 

  • Scheffer F (1984) Lehrbuch der Bodenkunde /Scheffer/Schachtschabel. 11. ed. Enke, Stuttgart.

  • Schlichting E, Blume HP, Stahr K (1995) Bodenkundliches Praktikum. Blackwell, Berlin

    Google Scholar 

  • Strauss B, Biedermann R (2006) Urban brownfields as temporary habitats: driving forces for the diversity of phytophagous insects. Ecography 29:928–940 doi:10.1111/j.2006.0906-7590.04765.x

    Article  Google Scholar 

  • Sukopp H, Wittig R (1993) Stadtökologie. Fischer, Jena

    Google Scholar 

  • Sykora KV, van den Bogert J, Berendse F (2004) Changes in soil and vegetation during dune slack succession. J Veg Sci 15:209–218 doi:10.1658/1100-9233(2004)015[0209:CISAVD]2.0.CO;2

    Google Scholar 

  • Taubner H, Horn R (1999) Estimating soil water and air capacity from physical properties in anthropogenic substrate horizons. J Plant Nutr Soil Sci—Z Pflanzenernahr Bodenkd 162:33–40

    Article  CAS  Google Scholar 

  • Wang GH (2002) Plant traits and soil chemical variables during a secondary vegetation succession in abandoned fields on the loess plateau. Acta Bot Sin 44:990–998

    CAS  Google Scholar 

  • Wegener U (1998) Naturschutz in der Kulturlandschaft. Fischer, Jena

    Google Scholar 

  • Zehm A, Nobis M, Schwabe A (2003) Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora 198:142–160

    Google Scholar 

Download references

Acknowledgements

We thank Regine Kayser for laboratory work. This study was conducted as part of the TEMPO collaborative research project (Temporal Biodiversity and Building) and was supported by the German Federal Ministry of Education and Research in the framework of the programme “Biosphere Research—Integrative and Application-Oriented Model Projects” (BioTeam, BMBF, DE, grant 01LM0210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kleyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schadek, U., Strauss, B., Biedermann, R. et al. Plant species richness, vegetation structure and soil resources of urban brownfield sites linked to successional age. Urban Ecosyst 12, 115–126 (2009). https://doi.org/10.1007/s11252-008-0072-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-008-0072-9

Keywords

Navigation