Skip to main content
Log in

Contact Creep Behavior of Polydimethylsiloxane and Influence of Load, Tip Size, and Crosslink Density

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Time-dependent indentation creep behaviors of polydimethylsiloxane (PDMS) samples of different crosslink densities were studied through contact creep tests loaded with silica tips. Step loads from 0.1 to 10 mN were applied and held for 600 s. The data of penetration depth versus time were recorded during the holding period. A Hertz-type viscoelastic model was used to compute the creep compliance of the samples and the Johnson–Kendall–Roberts (JKR) theory was used to obtain the initial equivalent modulus, infinite equivalent modulus, and work of adhesion between the tested each pair of the PDMS and fused silica tip surfaces. The comparison between initial and infinite equivalent moduli obtained from the Hertz viscoelastic theory and the JKR theory shows that the adhesion between the tip and the sample surface plays an importance role in affecting the analysis results when the indentation strain is small. The influences of crosslink density, applied load, and tip size on the localized PDMS properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Balakrisnan, B., Patil, S., Smela, E.: Patterning PDMS using a combination of wet and dry etching. J. Micromech. Microeng. 19(4), 047002 (2009)

    Article  Google Scholar 

  2. Chambon, F., Winter, H.H.: Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J. Rheol. 31(8), 683–697 (1987)

    Article  CAS  Google Scholar 

  3. Hu, Y., Mackenzie, J.D.: Rubber-like elasticity of organically modified silicates. J. Mater. Sci. 27(16), 4415–4420 (1992)

    Article  CAS  Google Scholar 

  4. Brown, X.Q., Ookawa, K., Wong, J.Y.: Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response. Biomaterials 26(16), 3123–3129 (2005)

    Article  CAS  Google Scholar 

  5. Carrillo, F., Gupta, S., Balooch, M., Marshall, S.J., Marshall, G.W., Pruitt, L., Puttlitz, C.M.: Nanoindentation of polydimethylsiloxane elastomers: effect of crosslinking, work of adhesion, and fluid environment on elastic modulus. J. Mater. Res. 20(10), 2820–2830 (2005)

    Article  CAS  Google Scholar 

  6. Lim, Y.Y., Chaudhri, M.M.: Indentation of elastic solids with a rigid Vickers pyramidal indenter. Mech. Mater. 38(12), 1213–1228 (2006)

    Article  Google Scholar 

  7. Lim, Y.Y., Chaudhri, M.M.: Indentation of elastic solids with rigid cones. Philos. Mag. 84(27), 2877–2903 (2004)

    Article  CAS  Google Scholar 

  8. Sirghi, L., Rossi, F.: Adhesion and elasticity in nanoscale indentation. Appl. Phys. Lett. 89(24), 243118 (2006)

    Article  Google Scholar 

  9. Deuschle, J.K., Deuschle, H.M., Enders, S., Arzt, E.: Contact area determination in indentation testing of elastomers. J. Mater. Res. 24(03), 736–748 (2011)

    Article  Google Scholar 

  10. Song, J., Tranchida, D., Vancso, G.J.: Contact mechanics of UV/ozone-treated PDMS by AFM and JKR testing: mechanical performance from nano-to micrometer length scales. Macromolecules 41, 6757–6762 (2008)

    Article  CAS  Google Scholar 

  11. Peng, X., Huang, J., Deng, H., Xiong, C., Fang, J.: A multi-sphere indentation method to determine Young’s modulus of soft polymeric materials based on the Johnson–Kendall–Roberts contact model. Meas. Sci. Technol. 22(2), 027003 (2011)

    Article  Google Scholar 

  12. Shen, Y.X., Wei, P.J., Lin, J.F.: Modified method developed for contact-induced adhesion in indentation. J. Mater. Res. 24(05), 1795–1802 (2009)

    Article  CAS  Google Scholar 

  13. Vanlandingham, M.R., Chang, N.K., Drzal, P.L., White, C.C., Chang, S.H.: Viscoelastic characterization of polymers using instrumented indentation. I. Quasi-static testing. J. Polym. Sci. B 43(14), 1794–1811 (2005)

    Article  CAS  Google Scholar 

  14. Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992)

    Article  CAS  Google Scholar 

  15. Lee, E.H., Radok, J.R.M.: The contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438–444 (1960)

    Article  Google Scholar 

  16. Cheng, Y.-T., Yang, F.: Obtaining shear relaxation modulus and creep compliance of linear viscoelastic materials from instrumented indentation using axisymmetric indenters of power-law profiles. J. Mater. Res. 24(10), 3013–3017 (2011)

    Article  Google Scholar 

  17. Cheng, Y.-T., Cheng, C.-M.: Relationship between contact stiffness, contact depth, and mechanical properties for indentation in linear viscoelastic solids using axisymmetric indenters. Struct. Control Health Monit. 13(1), 561–569 (2006)

    Article  Google Scholar 

  18. Lu, H., Wang, B., Ma, J., Huang, G., Viswanathan, H.: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time Depend. Mater. 7, 189–207 (2003)

    Article  Google Scholar 

  19. Oyen, M.L.: Analytical techniques for indentation of viscoelastic materials. Philos. Mag. 86(33–35), 5625–5641 (2006)

    Article  CAS  Google Scholar 

  20. Oyen, M.L., Cook, R.F.: Load–displacement behavior during sharp indentation of visco-elastic–plastic materials. J. Mater. Res. 18(1), 139–150 (2003)

    Article  CAS  Google Scholar 

  21. Vandamme, M., Ulm, F.-J.: Viscoelastic solutions for conical indentation. Int. J. Solids Struct. 43(10), 3142–3165 (2006)

    Article  Google Scholar 

  22. Liu, K., Vanlandingham, M.R., Ovaert, T.C.: Mechanical characterization of soft viscoelastic gels via indentation and optimization-based inverse finite element analysis. J. Mech. Behav. Biomed. Mater. 2(4), 355–363 (2009)

    Article  Google Scholar 

  23. Ovaert, T.C., Kim, B.R., Wang, J.: Multi-parameter models of the viscoelastic/plastic mechanical properties of coatings via combined nanoindentation and non-linear finite element modeling. Prog. Org. Coat. 47(3–4), 312–323 (2003)

    Article  CAS  Google Scholar 

  24. Wang, J., Ovaert, T.C.: Computational mechanical property determination of viscoelastic/plastic materials from nanoindentation creep test data. J. Mater. Res. 24(03), 1245–1257 (2011)

    Article  Google Scholar 

  25. Hui, C.Y., Baney, J.M., Kramer, E.J.: Contact mechanics and adhesion of viscoelastic spheres. Langmuir 14, 6570–6578 (1998)

    Article  CAS  Google Scholar 

  26. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301–313 (1971)

    Article  CAS  Google Scholar 

  27. He, B., Lee, J., Patankar, N.A.: Contact angle hysteresis on rough hydrophobic surfaces. Colloids Surf. A 248(1–3), 101–104 (2004)

    Article  CAS  Google Scholar 

  28. Mata, A., Fleischman, A.J., Roy, S.: Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro nanosystems. Biomed. Microdevices 7(4), 281–293 (2005)

    Article  CAS  Google Scholar 

  29. White, C.C., Vanlandingham, M.R., Drzal, P.L., Chang, N.K., Chang, S.H.: Viscoelastic characterization of polymers using instrumented indentation. II. Dynamic testing. J. Polym. Sci. B 43(14), 1812–1824 (2005)

    Article  CAS  Google Scholar 

  30. http://www.edmundoptics.com/optics/optical-lenses/ball-condenser-lenses/fused-silica-ball-half-ball-lenses/3300

  31. Brinson, H.F., Brinson, L.C.: Polymer Engineering Science and Viscoelasticity. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  32. Perutz, S., Kramer, E.J., Baney, J., Hui, C.-Y., Cohen, C.: Investigation of adhesion hysteresis in poly(dimethylsiloxane) networks using the JKR technique. J. Polym. Sci. B 36, 2129–2139 (1998)

    Article  CAS  Google Scholar 

  33. Maxwell, R.S., Balazs, B.: Residual dipolar coupling for the assessment of cross-link density changes in γ-irradiated silica-PDMS composite materials. J. Chem. Phys. 116(23), 10492 (2002)

    Article  CAS  Google Scholar 

  34. Tabor, D.: Microindentation Techniques in Materials Science and Engineering. American Society for Testing and Materials, Philadelphia (1986)

    Google Scholar 

  35. Galliano, A., Bistac, S., Schultz, J.: Adhesion and friction of PDMS networks: molecular weight effects. J. Colloid Interface Sci. 265(2), 372–379 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Yu, H. & Wang, Q.J. Contact Creep Behavior of Polydimethylsiloxane and Influence of Load, Tip Size, and Crosslink Density. Tribol Lett 49, 291–299 (2013). https://doi.org/10.1007/s11249-012-0069-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-0069-7

Keywords

Navigation