Skip to main content
Log in

Friction Properties of Carbon Nano-Onions from Experiment and Computer Simulations

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The carbon nano-onion can be considered as a new kind of interesting lubricating nanoparticle. Used as lubricant additives, carbon nano-onions lead to a strong reduction of both friction and wear, even at low temperature. To better elucidate the mechanisms by which these processes occur, coupled experimental and computational investigations are carried out. In addition, it is found that lubricious iron oxide nanoparticles are generated in the core of the steel contact through mechanisms that are not yet known. The molecular dynamics simulations of carbon onions placed between sliding diamond-like carbon surfaces at high contact pressure indicate that the lubrication mechanism of the onions is based on a coupled process of rolling and sliding inside the contact area. We conclude that most of carbon onions seem to remain intact under friction processes and do not generate graphitic planes, which is in contrast to the previously determined behavior of MoS2 fullerenes that are mainly exfoliated inside the contact area and liberate lubricating lamellar sheets of h-MoS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bushan, B., Gupta, B.K.: Handbook of Tribology: Materials Coatings and Surface Treatments. McGraw-Hill, New York (1991)

    Google Scholar 

  2. Grossiord, C., Varlot, K., Martin, J.M., Le Mogne, T., Esnouf, C., Inoue, K.: MoS2 single sheet lubrication by molybdenum dithiocarbamate. Tribol. Int. 31, 737–743 (1998)

    Article  CAS  Google Scholar 

  3. Tenne, R.: Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nanotechnol. 1, 103–111 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Joly-Pottuz, L., Dassenoy, F., Belin, M., Vacher, B., Martin, J.M., Fleischer, N.: Ultralow-friction and wear properties of IF-WS2 under boundary lubrication. Tribol. Lett. 18, 477–485 (2005)

    Article  CAS  Google Scholar 

  5. Joly-Pottuz, L., Martin, J.M., Dassenoy, F., Belin, M., Montagnac, G., Reynard, B., Fleischer, N.: Pressure-induced exfoliation of inorganic fullerene-like WS2 particles in a Hertzian contact. J. Appl. Phys. 99, 023524 (2006)

    Article  ADS  Google Scholar 

  6. Joly-Pottuz, L., Martin, J.M., Belin, M., Dassenoy, F., Montagnac, G., Reynard, B.: Study of inorganic fullerenes and carbon nanotubes by in situ Raman tribometry. Appl. Phys. Lett. 91, 153107 (2007)

    Article  ADS  Google Scholar 

  7. Rapoport, L., Bilik, Y., Feldman, Y., Homyonfer, M., Cohen, S.R., Tenne, R.: Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791 (1997)

    Article  CAS  ADS  Google Scholar 

  8. Joly-Pottuz, L., Dassenoy, F., Vacher, B., Martin, J.M., Mieno, T.: Ultralow friction and wear behaviour of Ni/Y-based single wall carbon nanotubes (SWNTs). Tribol. Int. 37, 1013–1018 (2004)

    Article  CAS  Google Scholar 

  9. Joly-Pottuz, L., Matsumoto, N., Kinoshita, H., Vacher, B., Belin, M., Montagnac, G., Martin, J.M., Ohmae, N.: Diamond-derived carbon onions as lubricant additives. Tribol. Int. 41, 69–78 (2008)

    Article  CAS  Google Scholar 

  10. Joly-Pottuz, L., Vacher, B., Ohmae, N., Martin, J.M., Epicier, T.: Anti-wear and friction reducing mechanisms of carbon nano-onions as lubricant additives. Tribol. Lett. 30, 69–80 (2008)

    Article  CAS  Google Scholar 

  11. Yuansheng, J., Shenghua, L.: Superlubricity of in situ generated protective layer on worn metal surfaces in presence of Mg6Si4O10(OH)8. In: Erdemir, A., Martin, J.M. (eds.) Superlubricity, p. 445. Elsevier, Amsterdam, The Netherlands (2007)

  12. Buldum, A., Lu, J.P.: Atomic scale sliding and rolling of carbon nanotubes. Phys. Rev. Lett. 83, 5050–5053 (1999)

    Article  CAS  ADS  Google Scholar 

  13. Falvo, M.R., Steele, J., Taylor II, R.M., Superfine, R.: Gearlike rolling motion mediated by commensurate contact: Carbon nanotube on HOPG. Phys. Rev B 62, R10665–R10667 (2000)

    Article  CAS  ADS  Google Scholar 

  14. Miura, K., Sasaki, N.: Superlubricity of fullerene intercalated graphite composite. In: Erdemir, A., Martin, J.M. (eds.) Superlubricity, p. 161. Elsevier, Amsterdam, The Netherlands (2007)

  15. Ni, B., Sinnott, S.B.: Tribological properties of carbon nanotubes bundles predicted from atomistic simulations. Surf. Sci. 487, 87–96 (2001)

    Article  CAS  ADS  Google Scholar 

  16. Joly-Pottuz, L.: Ph.D. Thesis (number 2005-24), Ecole Centrale de Lyon (2005)

  17. Heo, S., Sinnott, S.B.: Effect of molecular interactions on carbon nanotube friction. J. Appl. Phys. 102, 064307 (2007)

    Article  ADS  Google Scholar 

  18. Kinoshita, H., Kume, I., Tagawa, M., Ohmae, N.: High friction of a vertically aligned carbon-nanotube film in microtribology. Appl. Phys. Lett. 85, 2780 (2004)

    Article  CAS  ADS  Google Scholar 

  19. Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B., Sinnott, S.B.: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons”. J. Phys.-Condes. Matter 14, 783–802 (2002)

    Article  CAS  ADS  Google Scholar 

  20. Lennard-Jones, J.E.: Cohesion. Proc. Phys. Soc. 43, 461–482 (1931)

    Article  MATH  CAS  ADS  Google Scholar 

  21. Olla, M., Navarra, G., Elsener, B., Rossi, A.: Non destructive in-depth composition profile of oxy-hydroxide nanolayers on iron surfaces from ARXPS measurement. Surf. Interface Anal. 38, 964 (2006)

    Article  CAS  Google Scholar 

  22. Matsumoto, N.: Tribology of advanced carbon materials with focuses on onion-like carbon. Ph.D. Thesis, Kobe University (2009)

  23. Matsumoto, N., Joly-Pottuz, L., Kinoshita, H., Ohmae, N.: Application of onion-like carbon to micro and macrotribology. Diam. Relat. Mater. 16, 1227–1230 (2007)

    Article  CAS  Google Scholar 

  24. Tomita, S., Sakurai, T., Ohta, H., Fujii, M., Hayashi, S.: Structure and electronic properties of carbon onions. J. Chem. Phys. 114, 7477–7482 (2001)

    Article  CAS  ADS  Google Scholar 

  25. Weast, R.C. (ed.): CRC Handbook of Chemistry and Physics, 49th edn. D-38-D-49. Cooperative Research Centre for Soil and Land Management (CRC), Boca Raton, FL (1968)

  26. Srolovitz, D.J., Safran, S.A., Homyonfer, M., Tenne, R.: Phys. Rev. Lett. 1995, 1779 (1995)

    Article  ADS  Google Scholar 

  27. Bhushan, B., Gupta, B.K., Cleef, G.W.V., Capp, C., Coe, J.V.: Fullerene (C60) films for solid lubrication. Tribol. Trans. 36(4), 573–580 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

E.W.B. and S.B.S. acknowledge the support of the National Science Foundation (grant number CMMI-0742580). S.R.P. acknowledges the support of an AFOSR MURI. L.J.P. would like to thank the Japan Society for the Promotion of Science (JSPS) for its financial support in a part of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joly-Pottuz, L., Bucholz, E.W., Matsumoto, N. et al. Friction Properties of Carbon Nano-Onions from Experiment and Computer Simulations. Tribol Lett 37, 75–81 (2010). https://doi.org/10.1007/s11249-009-9492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9492-9

Keywords

Navigation