Skip to main content
Log in

Nanotribology and lubrication mechanisms of inorganic fullerene-like MoS2 nanoparticles investigated using lateral force microscopy (LFM)

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Inorganic fullerene-like (IF) MoS2 nanoparticles were produced by arc discharge in water, and their tribological properties were investigated using a lateral force microscope in dry nitrogen and humid air. Two types of tips – Si and Si3N4 tips were used in this work. The sharp Si tip produced a much higher contact stress than the blunt Si3N4 tip. The measurement of lateral forces using a Si3N4 tip resulted in almost no wear, while the measurement made using a Si tip resulted in MoS2 transfer due to the high contact stress. For comparison, measurements were also made on MoS2 films grown by pulsed laser deposition (PLD). The experimental results demonstrated that IF-MoS2 nanoparticles had significantly lower friction than the MoS2 films prepared by PLD. Variation of the test environment from dry to wet did not affect the tribological performance of the IF material as much as it did PLD films due to the chemical inert structure of the IF-MoS2 nanoparticles. The multi-wall-encapsulated structure of inorganic fullerenes has a nearly isotropic geometry. They can supply a slippery surface in all orientations, though only the basal planes of 2H–MoS2 crystals are optimum for lubrication. Therefore, the inorganic fullerenes do not have to be oriented by rubbing as does most layer-structured solid lubricants. However, the lack of reactive edge planes impedes bonding of the lubricant to the surface. The lubrication mechanisms of IF-MoS2 nanoparticles are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. Tenne L. Margulis M. Genut G. Hodes (1992) Nature 360 444 Occurrence Handle10.1038/360444a0

    Article  Google Scholar 

  • L. Margulis G. Salitra R. Tenne M. Talianker (1993) Nature 365 113 Occurrence Handle10.1038/365113b0

    Article  Google Scholar 

  • Y. Feldman E. Wasserman D.J. Srolovitz R. Tenne (1995) Science 267 222

    Google Scholar 

  • L. Rapoport Yu. Bilik Y. Feldman M. Homyonfer S.R. Cohen R. Tenne (1997) Nature 387 791

    Google Scholar 

  • L. Rapoport M. Lvovsky I. Lapsker V. Leshchinsky Yu Volovik Y. Feldman A. Zak R. Tenne (2001) Adv. Eng. Mater. 3 71

    Google Scholar 

  • L. Rapoport V. Leshchinsky M. Lvovsky O. Nepomnyashchy Yu Volovik R. Tenne (2002) Wear 252 518

    Google Scholar 

  • S. Prasad J.S. Zabinski (1997) Nature 387 761

    Google Scholar 

  • L. Rapoport Y. Feldman M. Homyonfer H. Cohen J. Sloan J.L. Hutchison R. Tenne (1999) Wear 225–229 975

    Google Scholar 

  • L. Rapoport V. Leshchinsky M. Lvovsky O. Nepomnyashchy Yu Volovik R. Tenne (2002) Ind. Lubr. Tribol. 54 171

    Google Scholar 

  • M. Chhowalla G.A.J. Amaratunga (2000) Nature 407 164

    Google Scholar 

  • L. Cizaire B. Vacher T. Le Mogne J.M. Martin L. Rapoport A. Margolin R. Tenne (2002) Sur. Coat. Technol. 160 282

    Google Scholar 

  • C.W. Mate G.M. McClelland R. Erlandsson S. Chiang (1987) Phys. Rev. Lett. 59 1942

    Google Scholar 

  • J.A. Ruan B. Bhushan (1994) ASME J. Tribol. 116 378

    Google Scholar 

  • G.T. Gibson G.S. Watson S. Myhra (1997) Wear 213 72 Occurrence Handle10.1016/S0043-1648(97)00175-0

    Article  Google Scholar 

  • J.J. Hu J.E. Bultman J.S. Zabinski (2004) Tribol. Lett. 17 543

    Google Scholar 

  • J. Drzmala (1994) Adv. Colloid Interfac. Sci. 50 143

    Google Scholar 

  • A.M. Homola J.N. Israelachvili P.M. McGuiggan M.L. Gee (1990) Wear 136 65

    Google Scholar 

  • C.A.J. Putman M. Igarashi R. Kaneko (1995) Appl. Phys. Lett. 66 3221

    Google Scholar 

  • U.D. Schwarz W. Allers G. Gensterblum R. Wiesendanger (1995) Phys. Rev. B 52 14976

    Google Scholar 

  • R.W. Carpick N. Agrait D.F. Ogletree M. Salmeron (1996) J. Vac. Sci. Technol. B 14 1289

    Google Scholar 

  • K.L. Johnson K. Kendall A.D. Roberts (1971) Proc. R. Soc. London A 324 301

    Google Scholar 

  • H. Klein D. Pailharey Y. Mathey (1997) Surf. Sci. 387 227

    Google Scholar 

  • P.B. Merrill S.S. Perry (1998) Surf. Sci. 418 342

    Google Scholar 

  • J.M. Martin H. Pascal C. Donnet Th. Le Mogne J.L. Loubet Th. Epicier (1994) Surf. Coat. Technol. 68–69 427

    Google Scholar 

  • C. Donnet J.M. Martin Th. Le Mogne M. Belin (1996) Tribol. Int. 29 123

    Google Scholar 

  • P.J. Blau C.E. Haberlin (1992) Thin Solid Films 219 129

    Google Scholar 

  • R.S. Bhattacharya A.K. Rai J.S. Zabinski N.T. McDevitt (1994) J. Mater. Res. 9 1615

    Google Scholar 

  • W. Zhao J.K. Tang A. Puri A.U. Falster W.B. Simmons SuffixJr (1995) Mat. Res. Soc. Symp. Proc. 383 313

    Google Scholar 

  • W. Zhao J.K. Tang Y.X. Li L.Q. Chen (1996) Wear 198 165

    Google Scholar 

  • M. Matsunaga T. Homma A. Tanaka (1982) ALSE Trans. 25 323

    Google Scholar 

  • P.D. Fleischauer (1984) ALSE Trans. 27 82

    Google Scholar 

  • G. Seifert H. Terrones M. Terrones G. Jungnickel T. Frauenheim (2000) Phys. Rev. Lett. 85 146

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.J. Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Zabinski, J. Nanotribology and lubrication mechanisms of inorganic fullerene-like MoS2 nanoparticles investigated using lateral force microscopy (LFM). Tribol Lett 18, 173–180 (2005). https://doi.org/10.1007/s11249-004-1773-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-004-1773-8

Keywords

Navigation