Skip to main content
Log in

Improvement of vitamin E quality and quantity in tobacco and lettuce by chloroplast genetic engineering

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Vitamin E (tocopherol: Toc) is an important lipid-soluble antioxidant synthesized in chloroplasts. Among the 8 isoforms of vitamin E, α-Toc has the highest activity in humans. To generate transgenic plants with enhanced vitamin E activity, we applied a chloroplast transformation technique. Three types of the transplastomic tobacco plants (pTTC, pTTMT and pTTC-TMT) carrying the Toc cyclase (TC) or γ-Toc methyltransferase (γ-TMT) gene and the TC plus γ-TMT genes as an operon in the plastid genome, respectively, were generated. There was a significant increase in total levels of Toc due to an increase in γ-Toc in the pTTC plants. Compared to the wild-type plants, Toc composition was altered in the pTTMT plants. In the pTTC-TMT plants, total Toc levels increased and α-Toc was a major Toc isoform. Furthermore, to use chloroplast transformation to produce α-Toc-rich vegetable, TC-overexpressing transplastomic lettuce plants (pLTC) were generated. Total Toc levels and vitamin E activity increased in the pLTC plants compared with the wild-type lettuce plants. These findings indicated that chloroplast genetic engineering is useful to improve vitamin E quality and quantity in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DMPBQ:

2,3-dimethyl-5-phytyl-1,4-benzoquinone

HGA:

Homogentisic acid

HPT:

Homogentisate phytyltransferase

HPP:

p-hydroxyphenylpyruvate

HPPD:

p-hydroxyphenylpyruvate dioxygenase

MEP:

Methylerythritol phosphate

MPBQ:

2-methyl-6-phytylbenzoquinone

MPBQMT:

2-methyl-6-phytylbenzoquinone methyltransferase

Toc:

Tocopherol

TC:

Tocopherol cyclase

γ-TMT:

γ-tocopherol methyltransferase

References

  • Adachi N, Migita M, Ohta T, Higashi A, Matsuda I (1997) Depressed natural killer cell activity due to decreased natural killer cell population in a vitamin E-deficient patient with Shwachman syndrome: reversible natural killer cell abnormality by α-tocopherol supplementation. Eur J Pediatr 156:444–448

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hitz WD, Coughlan SJ (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotech 21:1082–1087

    Article  CAS  Google Scholar 

  • Cheng Z, Sattler S, Maeda H, Sakuragi Y, Bryant DA, DellaPenna D (2003) Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in Cyanobacteria and photosynthetic eukaryotes. Plant Cell 15:2343–2356

    Article  PubMed  CAS  Google Scholar 

  • Cho EA, Lee CA, Kim YS, Baek SH, de los Reyes BG, Yun SJ (2005) Expression of γ-tocopherol methyltransferase transgene improves tocopherol composition inlettuce (Latuca sativa L.). Mol Cells 19:16–22

    PubMed  CAS  Google Scholar 

  • Collakova E, DellaPenna D (2001) Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 127:1113–1124

    Article  PubMed  CAS  Google Scholar 

  • Collakova E, DellaPenna D (2003) Homogentisate phytyl transferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol 131:632–642

    Article  PubMed  CAS  Google Scholar 

  • Farré G, Sudhakar D, Naqvi S, Sandmann G, Christou P, Capell T, Zhu C (2012) Transgenic rice grains expressing a heterologous p-hydroxyphenylpyruvate dioxygenase shift tocopherol synthesis from the γ to the α isoform without increasing absolute tocopherol levels. Transgenic Res. doi:10.1007/s11248-012-9601-7

    PubMed  Google Scholar 

  • Golds T, Maliga P, Koop H-U (1993) Stable plastid transformation in PEG-treated protoplasts of Nicotiana tabacum. Bio/Technology 11:95–97

    Article  CAS  Google Scholar 

  • Grusak MA, DellaPenna D (1999) Improving the nutrient composition of plants to enhance human nutrition and health. Annu Rev Plant Physiol Plant Mol Biol 50:133–161

    Article  PubMed  CAS  Google Scholar 

  • Hunter SC, Cahoon EB (2007) Enhancing Vitamin E in Oilseeds: unraveling Tocopherol and Tocotrienol Biosynthesis. Lipids 42:97–108

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa Y, Tamoi M, Sakuyama H, Maruta T, Ashida H, Yokota A, Shigeoka S (2010) Generation of transplastomic lettuce with enhanced growth and high yield. GM Crops 1:322–326

    Article  PubMed  Google Scholar 

  • Kamal-Eldin A, Appelqvist LA (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31:671–701

    Article  PubMed  CAS  Google Scholar 

  • Kanamoto H, Yamashita A, Asao H, Okumura S, Takase H, Hattori M, Yokota A, Tomizawa K (2006) Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Res 15:205–217

    Article  PubMed  CAS  Google Scholar 

  • Kanwischer M, Porfirova S, Bergmüller E, Dörmann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol 137:713–723

    Article  PubMed  CAS  Google Scholar 

  • Klein TM, Harper EC, Svab Z, Sanford JC, Fromm ME, Maliga P (1988) Stable genetic transformation of intact Nicotiana cells by the particle bombardment process. Proc Natl Acad Sci USA 85:8502–8505

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56:203–216

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Lee SM, Park SR, Jung J, Moon JK, Cheong JJ, Kim M (2007) Overexpression of Arabidopsis homogentisate phytyltransferase or tocopherol cyclase elevates vitamin E content by increasing γ-tocopherol level in lettuce (Lactuca sativa L.) Mol. Cells 24:301–306

    CAS  Google Scholar 

  • Lim S, Ashida H, Watanabe R, Inai K, Kim YS, Mukougawa K, Fukuda H, Tomizawa K, Ushiyama K, Asao H, Tamoi M, Masutani H, Shigeoka S, Yodoi J, Yokota A (2011) Production of biologically active human thioredoxin 1 protein in lettuce chloroplasts. Plant Mol Biol 76:335–344

    Article  PubMed  CAS  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  PubMed  CAS  Google Scholar 

  • Mangialasche F, Kivipelto M, Mecocci P, Rizzuto D, Palmer K, Winblad B, Fratiglioni L (2010) High plasma levels of vitamin E forms and reduced Alzheimer’s disease risk in advanced age. J Alzheimers Dis 20:1029–1037

    PubMed  CAS  Google Scholar 

  • Naqvi S, Farré G, Zhu C, Sandmann G, Capell T, Christou P (2011) Simultaneous expression of Arabidopsis p-hydroxyphenylpyruvate dioxygenase and MPBQ methyltransferase in transgenic corn kernels triples the tocopherol content. Transgenic Res 20:177–181

    Article  PubMed  CAS  Google Scholar 

  • National Research Council (NRC) (1989) Recommended dietary allowances, 10th edn. National Academy Press, Washington

    Google Scholar 

  • Norris SR, Shen X, DellaPenna D (1998) Complementation of the Arabidopsis pds1 mutation with the gene encoding p-hydroxy-phenylpyruvate dioxygenase. Plant Physiol 117:1317–1323

    Article  PubMed  CAS  Google Scholar 

  • Porfirova S, Bergmuller E, Tropf S, Lemke R, Dormann P (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci USA 99:12495–12500

    Article  PubMed  CAS  Google Scholar 

  • Prasad KN, Kumar A, Kochupillai V, Cole WC (1999) High doses of multiple antioxidant vitamins: essential ingredients in improving the efficacy of standard cancer therapy. J Am College Nutr 18:13–25

    CAS  Google Scholar 

  • Pryor WA (2000) Vitamin E and heart disease: basic science to clinical intervention trials. Free Radic Biol Med 28:141–164

    Article  PubMed  CAS  Google Scholar 

  • Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, Grundman M, Woodbury P, Growdon J, Cotman CW, Pfeiffer E, Schneider LS, Thal LJ (1997) A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N Engl J Med 336:1216–1222

    Article  PubMed  CAS  Google Scholar 

  • Sattler SE, Cheng Z, DellaPenna D (2004a) From Arabidopsis to agriculture: engineering improved vitamin E content in soybean. Trends Plant Sci 9:365–367

    Article  PubMed  CAS  Google Scholar 

  • Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D (2004b) Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16:1419–1432

    Article  PubMed  CAS  Google Scholar 

  • Savidge B, Weiss JD, Wong Y-HH, Lassner MW, Mitsky TA, Shewmaker CK, Post-Beittenmiller D, Valentin HE (2002) Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 129:321–332

    Article  PubMed  CAS  Google Scholar 

  • Schledz M, Seidler A, Beyer P, Neuhaus G (2001) A novel phytyltransferase from Synechocystis sp. PCC 6803 involved in tocopherol biosynthesis. FEBS Lett 499:15–20

    Article  PubMed  CAS  Google Scholar 

  • Seo YS, Kim SJ, Harn CH, Kim WT (2011) Ectopic expression of apple fruit homogentisate phytyltransferase gene (MdHPT1) increases tocopherol in transgenic tomato (Solanum lycopersicum cv. Micro-Tom) leaves and fruits. Phytochem 72:321–329

    Article  CAS  Google Scholar 

  • Shigeoka S, Ishiko H, Nakano Y, Mitsunaga T (1992) Isolation and properties of γ-tocopherol methyltransferase in Euglena gracilis. Biochem Biophys Acta 1128:220–226

    Article  PubMed  CAS  Google Scholar 

  • Shintani D, DellaPenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282:2098–2100

    Article  PubMed  CAS  Google Scholar 

  • Shintani DK, Cheng Z, DellaPenna D (2002) The role of 2- methyl-6-phytylbenzoquinone methyltransferase in determining tocopherol composition in Synechocystis sp. PCC6803. FEBS Lett 511:1–5

    Article  PubMed  CAS  Google Scholar 

  • Staub JM, Maliga P (1995) Expression of a chimeric uidA gene indicates that polycistronic mRNAs are efficiently translated in tobacco plastids. Plant J 7:845–848

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526–8530

    Article  PubMed  CAS  Google Scholar 

  • Traber MG, Sies H (1996) Vitamin E in humans: demand and delivery. Ann Rev Nutr 16:321–347

    Article  CAS  Google Scholar 

  • Tsegaye Y, Shintani DK, DellaPenna D (2002) Overexpression of the enzyme p-hydroxyphenylpyruvate dioxygenase in Arabidopsis and its relation to tocopherol biosynthesis. Plant Physiol Biochem 40:913–920

    Article  CAS  Google Scholar 

  • Yabuta Y, Motoki T, Yoshimura K, Takeda T, Ishikawa T, Shigeoka S (2002) Thylakoid-membrane bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. Plant J 32:915–925

    Article  PubMed  CAS  Google Scholar 

  • Yabuta Y, Tamoi M, Yamamoto K, Tomizawa K, Yokota A, Shigeoka S (2008) Molecular design of photosynthesis-elevated chloroplasts for mass accumulation of a foreign protein. Plant Cell Physiol 49:375–385

    Article  PubMed  CAS  Google Scholar 

  • Zhang GY, Liu RR, Xu G, Zhang P, Li Y, Tang KX, Liang GH, Liu QQ (2012) Increased α-tocotrienol content in seeds of transgenic rice overexpressing Arabidopsis γ-tocopherol methyltransferase. Transgenic Res. doi:10.1007/s11248-012-9630-2

    Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-aid for Scientific Research (A) (S.S.: 22248042) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, and in part by the Strategic Project to Support the Formation of Research Bases at Private Universities: Matching Fund Subsidy from MEXT, 2011-2015 (S1101035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Shigeoka.

Additional information

Yukinori Yabuta and Hiroyuki Tanaka contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yabuta, Y., Tanaka, H., Yoshimura, S. et al. Improvement of vitamin E quality and quantity in tobacco and lettuce by chloroplast genetic engineering. Transgenic Res 22, 391–402 (2013). https://doi.org/10.1007/s11248-012-9656-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-012-9656-5

Keywords

Navigation