Skip to main content

Advertisement

Log in

Mutant mouse models of oxidative stress

  • Review
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Oxidative stress corresponds to an excess in reactive oxygen species (ROS) including free radicals which are highly reactive with cellular constituents. Thereby ROS induce damage to DNA, proteins and lipids, which are all involved in the etiology of numerous pathologies such as cancer. To prevent potential damage, a tight regulation of ROS level is achieved through numerous enzyme systems and small molecules such as glutathione and vitamin C. Mutant mouse models targeting antioxidant enzymes have confirmed their essential role in ROS level control, and have shown a limited redundancy of their activity. Additionally, a number of other mutant mouse models exhibit increased ROS levels, suggesting an antioxidant role for the corresponding targeted gene. This is the case for mice deficient for the transcription factors p53, JunD, FoxOs, and HIF-2α, which are involved in the modulation of antioxidant enzymes expression. Mice deficient either for the stress factor TP53INP1, which is a target of p53, or for ATM involved in DNA damage sensoring, also show a constitutive oxidative stress. Finally, the last reported case of mice with a permanent oxidative stress targets Bmi which is a transcriptional repressor of the polycomb family. Interestingly, most of these “oxidative stressed mice” either spontaneously develop cancers or are more susceptible than wild-type to tumor-induced protocols. Altogether, these models markedly reinforce the causal link between oxidative stress and cancer. In the future, they will be helpful tools for basic research aimed at unraveling the interplay between redox control actors as well as their relative importance. In addition, these oxidative stressed mouse models may be useful for applied research in particular in preclinical assays where redox status regulation is absolutely required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Arai T, Kelly VP, Minowa O, Noda T, Nishimura S (2002) High accumulation of oxidative DNA damage, 8-hydroxyguanine, in Mmh/Ogg1 deficient mice by chronic oxidative stress. Carcinogenesis 23:2005–2010

    Article  CAS  PubMed  Google Scholar 

  • Araki Y, Sugihara H, Hattori T (2006) The free radical scavengers edaravone and tempol suppress experimental dextran sulfate sodium-induced colitis in mice. Int J Mol Med 17:331–334

    CAS  PubMed  Google Scholar 

  • Busuttil RA, Garcia AM, Cabrera C, Rodriguez A, Suh Y, Kim WH, Huang TT, Vijg J (2005) Organ-specific increase in mutation accumulation and apoptosis rate in CuZn-superoxide dismutase-deficient mice. Cancer Res 65:11271–11275

    Article  CAS  PubMed  Google Scholar 

  • Cano CE, Gommeaux J, Pietri S, Culcasi M, Garcia S, Seux M, Barelier S, Vasseur S, Spoto RP, Pebusque MJ, Dusetti NJ, Iovanna JL, Carrier A (2009) Tumor protein 53-induced nuclear protein 1 is a major mediator of p53 antioxidant function. Cancer Res 69:219–226

    Article  CAS  PubMed  Google Scholar 

  • Carlsson LM, Jonsson J, Edlund T, Marklund SL (1995) Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci USA 92:6264–6268

    Article  CAS  PubMed  Google Scholar 

  • Carrier A, Nguyen C, Victorero G, Granjeaud S, Rocha D, Bernard K, Miazek A, Ferrier P, Malissen M, Naquet P, Malissen B, Jordan BR (1999) Differential gene expression in CD3epsilon- and RAG1-deficient thymuses: definition of a set of genes potentially involved in thymocyte maturation. Immunogenetics 50:255–270

    Article  CAS  PubMed  Google Scholar 

  • Choi MH, Lee IK, Kim GW, Kim BU, Han YH, Yu DY, Park HS, Kim KY, Lee JS, Choi C, Bae YS, Lee BI, Rhee SG, Kang SW (2005) Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature 435:347–353

    Article  CAS  PubMed  Google Scholar 

  • Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  CAS  PubMed  Google Scholar 

  • Craven PA, Melhem MF, Phillips SL, DeRubertis FR (2001) Overexpression of Cu2+/Zn2+ superoxide dismutase protects against early diabetic glomerular injury in transgenic mice. Diabetes 50:2114–2125

    Article  CAS  PubMed  Google Scholar 

  • de Haan JB, Bladier C, Griffiths P, Kelner M, O’Shea RD, Cheung NS, Bronson RT, Silvestro MJ, Wild S, Zheng SS, Beart PM, Hertzog PJ, Kola I (1998) Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J Biol Chem 273:22528–22536

    Article  PubMed  Google Scholar 

  • Donehower LA (1996) The p53-deficient mouse: a model for basic and applied cancer studies. Semin Cancer Biol 7:269–278

    Article  CAS  PubMed  Google Scholar 

  • Elchuri S, Oberley TD, Qi W, Eisenstein RS, Jackson Roberts L, Van Remmen H, Epstein CJ, Huang TT (2005) CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24:367–380

    Article  CAS  PubMed  Google Scholar 

  • Esworthy RS, Mann JR, Sam M, Chu FF (2000) Low glutathione peroxidase activity in Gpx1 knockout mice protects jejunum crypts from gamma-irradiation damage. Am J Physiol Gastrointest Liver Physiol 279:G426–G436

    CAS  PubMed  Google Scholar 

  • Fattman CL, Tan RJ, Tobolewski JM, Oury TD (2006) Increased sensitivity to asbestos-induced lung injury in mice lacking extracellular superoxide dismutase. Free Radic Biol Med 40:601–607

    Article  CAS  PubMed  Google Scholar 

  • Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C (2007) Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer 121:2381–2386

    Article  CAS  PubMed  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  • Fuster JJ, Sanz-Gonzalez SM, Moll UM, Andres V (2007) Classic and novel roles of p53: prospects for anticancer therapy. Trends Mol Med 13:192–199

    Article  CAS  PubMed  Google Scholar 

  • Gerald D, Berra E, Frapart YM, Chan DA, Giaccia AJ, Mansuy D, Pouyssegur J, Yaniv M, Mechta-Grigoriou F (2004) JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118:781–794

    Article  CAS  PubMed  Google Scholar 

  • Gironella M, Seux M, Xie MJ, Cano C, Tomasini R, Gommeaux J, Garcia S, Nowak J, Yeung ML, Jeang KT, Chaix A, Fazli L, Motoo Y, Wang Q, Rocchi P, Russo A, Gleave M, Dagorn JC, Iovanna JL, Carrier A, Pebusque MJ, Dusetti NJ (2007) Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci USA 104:16170–16175

    Article  CAS  PubMed  Google Scholar 

  • Gommeaux J, Cano C, Garcia S, Gironella M, Pietri S, Culcasi M, Pebusque MJ, Malissen B, Dusetti N, Iovanna J, Carrier A (2007) Colitis and colitis-associated cancer are exacerbated in mice deficient for tumor protein 53-induced nuclear protein 1. Mol Cell Biol 27:2215–2228

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255

    Article  CAS  PubMed  Google Scholar 

  • Ho YS, Xiong Y, Ma W, Spector A, Ho DS (2004) Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem 279:32804–32812

    Article  CAS  PubMed  Google Scholar 

  • Huang TT, Carlson EJ, Raineri I, Gillespie AM, Kozy H, Epstein CJ (1999) The use of transgenic and mutant mice to study oxygen free radical metabolism. Ann N Y Acad Sci 893:95–112

    Article  CAS  PubMed  Google Scholar 

  • Hussain SP, Amstad P, Raja K, Ambs S, Nagashima M, Bennett WP, Shields PG, Ham AJ, Swenberg JA, Marrogi AJ, Harris CC (2000) Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease. Cancer Res 60:3333–3337

    CAS  PubMed  Google Scholar 

  • Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3:276–285

    Article  CAS  PubMed  Google Scholar 

  • Isozaki Y, Yoshida N, Kuroda M, Takagi T, Handa O, Kokura S, Ichikawa H, Naito Y, Okanoue T, Yoshikawa T (2006) Effect of a novel water-soluble vitamin E derivative as a cure for TNBS-induced colitis in rats. Int J Mol Med 17:497–502

    CAS  PubMed  Google Scholar 

  • Janicke RU, Sohn D, Schulze-Osthoff K (2008) The dark side of a tumor suppressor: anti-apoptotic p53. Cell Death Differ 15:959–976

    Article  CAS  PubMed  Google Scholar 

  • Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267

    Article  CAS  PubMed  Google Scholar 

  • Klungland A, Rosewell I, Hollenbach S, Larsen E, Daly G, Epe B, Seeberg E, Lindahl T, Barnes DE (1999) Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc Natl Acad Sci USA 96:13300–13305

    Article  CAS  PubMed  Google Scholar 

  • Kowluru RA, Kowluru V, Xiong Y, Ho YS (2006) Overexpression of mitochondrial superoxide dismutase in mice protects the retina from diabetes-induced oxidative stress. Free Radic Biol Med 41:1191–1196

    Article  CAS  PubMed  Google Scholar 

  • Kruidenier L, Verspaget HW (2002) Review article: oxidative stress as a pathogenic factor in inflammatory bowel disease—radicals or ridiculous? Aliment Pharmacol Ther 16:1997–2015

    Article  CAS  PubMed  Google Scholar 

  • Lau A, Villeneuve NF, Sun Z, Wong PK, Zhang DD (2008) Dual roles of Nrf2 in cancer. Pharmacol Res 58:262–270

    Article  CAS  PubMed  Google Scholar 

  • Laurent G, Solari F, Mateescu B, Karaca M, Castel J, Bourachot B, Magnan C, Billaud M, Mechta-Grigoriou F (2008) Oxidative stress contributes to aging by enhancing pancreatic angiogenesis and insulin signaling. Cell Metab 7:113–124

    Article  CAS  PubMed  Google Scholar 

  • Lee TH, Kim SU, Yu SL, Kim SH, Park DS, Moon HB, Dho SH, Kwon KS, Kwon HJ, Han YH, Jeong S, Kang SW, Shin HS, Lee KK, Rhee SG, Yu DY (2003) Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood 101:5033–5038

    Article  CAS  PubMed  Google Scholar 

  • Li L, Shoji W, Takano H, Nishimura N, Aoki Y, Takahashi R, Goto S, Kaifu T, Takai T, Obinata M (2007) Increased susceptibility of MER5 (peroxiredoxin III) knockout mice to LPS-induced oxidative stress. Biochem Biophys Res Commun 355:715–721

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Cao L, Chen J, Song S, Lee IH, Quijano C, Liu H, Keyvanfar K, Chen H, Cao LY, Ahn BH, Kumar NG, Rovira II, Xu XL, van Lohuizen M, Motoyama N, Deng CX, Finkel T (2009) Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 459:387–392

    Article  CAS  PubMed  Google Scholar 

  • Meira LB, Bugni JM, Green SL, Lee CW, Pang B, Borenshtein D, Rickman BH, Rogers AB, Moroski-Erkul CA, McFaline JL, Schauer DB, Dedon PC, Fox JG, Samson LD (2008) DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Invest 118:2516–2525

    CAS  PubMed  Google Scholar 

  • Minowa O, Arai T, Hirano M, Monden Y, Nakai S, Fukuda M, Itoh M, Takano H, Hippou Y, Aburatani H, Masumura K, Nohmi T, Nishimura S, Noda T (2000) Mmh/Ogg1 gene inactivation results in accumulation of 8-hydroxyguanine in mice. Proc Natl Acad Sci USA 97:4156–4161

    Article  CAS  PubMed  Google Scholar 

  • Moon EY, Han YH, Lee DS, Han YM, Yu DY (2004) Reactive oxygen species induced by the deletion of peroxiredoxin II (PrxII) increases the number of thymocytes resulting in the enlargement of PrxII-null thymus. Eur J Immunol 34:2119–2128

    Article  CAS  PubMed  Google Scholar 

  • Neumann CA, Krause DS, Carman CV, Das S, Dubey DP, Abraham JL, Bronson RT, Fujiwara Y, Orkin SH, Van Etten RA (2003) Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 424:561–565

    Article  CAS  PubMed  Google Scholar 

  • Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z, Miao L, Tothova Z, Horner JW, Carrasco DR, Jiang S, Gilliland DG, Chin L, Wong WH, Castrillon DH, DePinho RA (2007) FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128:309–323

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Gomez M, Kwak MK, Dolan PM, Itoh K, Yamamoto M, Talalay P, Kensler TW (2001) Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci USA 98:3410–3415

    Article  CAS  PubMed  Google Scholar 

  • Ran Q, Liang H, Gu M, Qi W, Walter CA, Roberts LJ 2nd, Herman B, Richardson A, Van Remmen H (2004) Transgenic mice overexpressing glutathione peroxidase 4 are protected against oxidative stress-induced apoptosis. J Biol Chem 279:55137–55146

    Article  CAS  PubMed  Google Scholar 

  • Reliene R, Schiestl RH (2006) Antioxidant N-acetyl cysteine reduces incidence and multiplicity of lymphoma in Atm deficient mice. DNA Repair (Amst) 5:852–859

    Article  CAS  Google Scholar 

  • Reliene R, Schiestl RH (2007) Antioxidants suppress lymphoma and increase longevity in Atm-deficient mice. J Nutr 137:229S–232S

    CAS  PubMed  Google Scholar 

  • Reliene R, Fischer E, Schiestl RH (2004) Effect of N-acetyl cysteine on oxidative DNA damage and the frequency of DNA deletions in atm-deficient mice. Cancer Res 64:5148–5153

    Article  CAS  PubMed  Google Scholar 

  • Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11:1306–1313

    Article  CAS  PubMed  Google Scholar 

  • Sakumi K, Tominaga Y, Furuichi M, Xu P, Tsuzuki T, Sekiguchi M, Nakabeppu Y (2003) Ogg1 knockout-associated lung tumorigenesis and its suppression by Mth1 gene disruption. Cancer Res 63:902–905

    CAS  PubMed  Google Scholar 

  • Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308:1909–1911

    Article  CAS  PubMed  Google Scholar 

  • Schubert R, Erker L, Barlow C, Yakushiji H, Larson D, Russo A, Mitchell JB, Wynshaw-Boris A (2004) Cancer chemoprevention by the antioxidant tempol in Atm-deficient mice. Hum Mol Genet 13:1793–1802

    Article  CAS  PubMed  Google Scholar 

  • Scortegagna M, Ding K, Oktay Y, Gaur A, Thurmond F, Yan LJ, Marck BT, Matsumoto AM, Shelton JM, Richardson JA, Bennett MJ, Garcia JA (2003) Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1−/− mice. Nat Genet 35:331–340

    Article  CAS  PubMed  Google Scholar 

  • Soussi T, Wiman KG (2007) Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell 12:303–312

    Article  CAS  PubMed  Google Scholar 

  • Tomasini R, Samir AA, Vaccaro MI, Pebusque MJ, Dagorn JC, Iovanna JL, Dusetti NJ (2001) Molecular and functional characterization of the stress-induced protein (SIP) gene and its two transcripts generated by alternative splicing. SIP induced by stress and promotes cell death. J Biol Chem 276:44185–44192

    Article  CAS  PubMed  Google Scholar 

  • Tomasini R, Samir AA, Pebusque MJ, Calvo EL, Totaro S, Dagorn JC, Dusetti NJ, Iovanna JL (2002) P53-dependent expression of the stress-induced protein (SIP). Eur J Cell Biol 81:294–301

    Article  CAS  PubMed  Google Scholar 

  • Tomasini R, Samir AA, Carrier A, Isnardon D, Cecchinelli B, Soddu S, Malissen B, Dagorn JC, Iovanna JL, Dusetti NJ (2003) TP53INP1s and homeodomain-interacting protein kinase-2 (HIPK2) are partners in regulating p53 activity. J Biol Chem 278:37722–37729

    Article  CAS  PubMed  Google Scholar 

  • Tomasini R, Seux M, Nowak J, Bontemps C, Carrier A, Dagorn JC, Pebusque MJ, Iovanna JL, Dusetti NJ (2005) TP53INP1 is a novel p73 target gene that induces cell cycle arrest and cell death by modulating p73 transcriptional activity. Oncogene 24:8093–8104

    CAS  PubMed  Google Scholar 

  • Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, McDowell EP, Lazo-Kallanian S, Williams IR, Sears C, Armstrong SA, Passegue E, DePinho RA, Gilliland DG (2007) FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128:325–339

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  PubMed  Google Scholar 

  • Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N, Thorpe SR, Alderson NL, Baynes JW, Epstein CJ, Huang TT, Nelson J, Strong R, Richardson A (2003) Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 16:29–37

    Article  PubMed  Google Scholar 

  • Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Phelan SA, Forsman-Semb K, Taylor EF, Petros C, Brown A, Lerner CP, Paigen B (2003) Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress. J Biol Chem 278:25179–25190

    Article  CAS  PubMed  Google Scholar 

  • Yant LJ, Ran Q, Rao L, Van Remmen H, Shibatani T, Belter JG, Motta L, Richardson A, Prolla TA (2003) The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med 34:496–502

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are supported by Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut National du Cancer, Association pour la Recherche sur le Cancer, La Ligue Nationale Contre le Cancer, and Fondation pour la Recherche Médicale. The authors would like to apologize to every author whose work was not cited in this article because of limited space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Carrier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pouyet, L., Carrier, A. Mutant mouse models of oxidative stress. Transgenic Res 19, 155–164 (2010). https://doi.org/10.1007/s11248-009-9308-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-009-9308-6

Keywords

Navigation