Skip to main content
Log in

Vapor Phase Ketonization of Acetic Acid on Ceria Based Metal Oxides

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The activities of CeO2, Mn2O3–CeO2 and ZrO2–CeO2 were measured for acetic acid ketonization under reaction conditions relevant to pyrolysis vapor upgrading. We show that the catalyst ranking changed depending on the reaction conditions. Mn2O3–CeO2 was the most active catalyst at 350 °C, while ZrO2–CeO2 was the most active catalyst at 450 °C. Under high CO2 and steam concentration in the reactants, Mn2O3–CeO2 was the most active catalyst at 350 and 450 °C. The binding energies of steam and CO2 with the active phase were calculated to provide the insight into the tolerance of Mn2O3–CeO2 to steam and CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Blin J, Volle G, Girard P, Bridgwater T, Meier D (2007) Fuel 86:2679–2686

    Article  CAS  Google Scholar 

  2. Bridgwater AV (2012) Biomass Bioenergy 38:68–94

    Article  CAS  Google Scholar 

  3. Bridgwater AV (1996) Catal Today 29:285–295

    Article  CAS  Google Scholar 

  4. Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  5. Bridgwater AV (2011) In: Brown RC (ed) Thermochemical processing of biomass: conversion into fuels, chemicals and power. John Wiley & Sons, Ltd, New York

    Google Scholar 

  6. Diebold JP (2000) in, National Renewable Energy Laboratory, 2000, http://www.nrel.gov/docs/fy00osti/27613.pdf. Access 20 Dec 2012

  7. Oasmaa A, Kuoppala E, Solantausta Y (2003) Energy and Fuels 17:433–443

    Article  CAS  Google Scholar 

  8. Branca C, Giudicianni P, Di Blasi C (2003) Ind Eng Chem Res 42:3190–3202

    Article  CAS  Google Scholar 

  9. Kuriacose JC, Swaminathan R (1969) J Catal 14:348–354

    Article  CAS  Google Scholar 

  10. Swaminathan R, Kuriacose JC (1970) J Catal 16:357–362

    Article  CAS  Google Scholar 

  11. Akashi T, Sato S, Takahashi R, Sodesawa T, Inui K (2003) Catal Commun 4:411–416

    Article  CAS  Google Scholar 

  12. Jayamani M, Pillai CN (1984) J Catal 87:93–97

    Article  CAS  Google Scholar 

  13. Pestman R, Koster RM, van Duijne A, Pieterse JAZ, Ponec V (1997) J Catal 168:265–272

    Article  CAS  Google Scholar 

  14. Martinez R, Huff MC, Barteau MA (2004) J Catal 222:404–409

    Article  CAS  Google Scholar 

  15. Parida K, Mishra HK (1999) J Mol Catal A: Chem 139:73–80

    Article  CAS  Google Scholar 

  16. Gliński M, Kijeński J (2000) Appl Catal A 190:87–91

    Article  Google Scholar 

  17. Gliński M, Kijeński J, Jakubowski A (1995) Appl Catal A 128:209–217

    Article  Google Scholar 

  18. Stubenrauch J, Brosha E, Vohs JM (1996) Catal Today 28:431–441

    Article  CAS  Google Scholar 

  19. Randery SD, Warren JS, Dooley KM (2002) Appl Catal A 226:265–280

    Article  CAS  Google Scholar 

  20. Hendren TS, Dooley KM (2003) Catal Today 85:333–351

    Article  CAS  Google Scholar 

  21. Gliński M, Kijeński J (2000) React Kinet Catal Lett 69:123–128

    Article  Google Scholar 

  22. Cutrufello MG, Ferino I, Solinas V, Primavera A, Trovarelli A, Auroux A, Picciau C (1999) Phys Chem Chem Phys 1:3369–3375

    Article  CAS  Google Scholar 

  23. Cutrufello MG, Ferino I, Monaci R, Rombi E, Solinas V (2002) Top Catal 19:225–240

    Article  CAS  Google Scholar 

  24. Gangadharan A, Shen M, Sooknoi T, Resasco DE, Mallinson RG (2010) Appl Catal A 385:80–91

    Article  CAS  Google Scholar 

  25. Gärtner CA, Serrano-Ruiz JC, Braden DJ, Dumesic JA (2009) Chemsuschem 2:1121–1124

    Article  Google Scholar 

  26. Gärtner CA, Serrano-Ruiz JC, Braden DJ, Dumesic JA (2009) J Catal 266:71–78

    Article  Google Scholar 

  27. Nagashima O, Sato S, Takahashi R, Sodesawa T (2005) J Mol Catal A: Chem 227:231–239

    Article  CAS  Google Scholar 

  28. Tanabe K, Yamaguchi T (1994) Catal Today 20:185–197

    Article  CAS  Google Scholar 

  29. Hasan MA, Zaki MI, Pasupulety L (2003) Appl Catal A 243:81–92

    Article  CAS  Google Scholar 

  30. Renz M (2005) Eur J Org Chem 2005:979–988

    Article  Google Scholar 

  31. Yamada Y, Segawa M, Sato F, Kojima T, Sato S (2011) J Mol Catal A: Chem 346:79–86

    Article  CAS  Google Scholar 

  32. Sato S, Koizumi K, Nozaki F (1998) J Catal 178:264–274

    Article  CAS  Google Scholar 

  33. Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  34. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  35. Blöchl PE (1994) Phys Rev B 50:17953–17979

    Article  Google Scholar 

  36. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  37. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  38. Mei DH, Deskins NA, Dupuis M (2007) Surf Sci 601:4993–5001

    Article  CAS  Google Scholar 

  39. Mei D, Deskins NA, Dupuis M, Ge QF (2008) J Phys Chem C 112:4257–4266

    Article  CAS  Google Scholar 

  40. Mei D, Deskins NA, Dupuis M, Ge Q (2007) J Phys Chem C 111:10514–10522

    Article  CAS  Google Scholar 

  41. Machida M, Uto M, Kurogi D, Kijima T (2000) Chem Mater 12:3158–3164

    Article  CAS  Google Scholar 

  42. Nakajima T, Nameta H, Mishima S, Matsuzaki I, Tanabe K (1994) J Mater Chem 4:853–858

    Article  CAS  Google Scholar 

  43. De Bruijn TJW, Soerawidjaja TH, De Jongt WA, Van Den Berg PJ (1980) Chem Eng Sci 35:1591–1599

    Article  Google Scholar 

  44. Nakano Y, Iizuka T, Hattori H, Tanabe K (1979) J Catal 57:1–10

    Article  CAS  Google Scholar 

  45. Pokrovski K, Jung KT, Bell AT (2001) Langmuir 17:4297–4303

    Article  CAS  Google Scholar 

  46. Bachiller-Baeza B, Rodriguez-Ramos I, Guerrero-Ruiz A (1998) Langmuir 14:3556–3564

    Article  CAS  Google Scholar 

  47. Tai J, Davis RJ (2007) Catal Today 123:42–49

    Article  CAS  Google Scholar 

  48. Yang Z, Wang Q, Wei S, Ma D, Sun Q (2010) J Phys Chem C 114:14891–14899

    Article  CAS  Google Scholar 

  49. Kumar S (2006) J Chem Phys 125:204704

    Article  Google Scholar 

  50. Fronzi M, Piccinin S, Delley B, Traversa E, Stampfl C (2009) Phys Chem Chem Phys 11:9188–9199

    Article  CAS  Google Scholar 

  51. Gritschneder S, Iwasawa Y, Reichling M (2007) Nanotechnology 18:044025

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the National Advanced Biofuels Consortium (NABC) which is funded by the Department of Energy’s Office of Biomass Program with recovery act funds. Part of the research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ayman M. Karim or Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Karim, A.M., Lebarbier, V.M. et al. Vapor Phase Ketonization of Acetic Acid on Ceria Based Metal Oxides. Top Catal 56, 1782–1789 (2013). https://doi.org/10.1007/s11244-013-0114-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0114-2

Keywords

Navigation