Skip to main content
Log in

Comparison of Ethylene Glycol Steam Reforming Over Pt and NiPt Catalysts on Various Supports

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Steam reforming of ethylene glycol (EG) was studied on Pt and NiPt catalysts supported on γ-Al2O3, TiO2, and carbon. On all supports bimetallic NiPt catalysts show higher activity for H2 production than the corresponding Pt catalysts as predicted from model surface science studies. The kinetic trends are similar for all catalysts (Pt and NiPt) with the H2 production rate being zero-order and fractional order with respect to water and ethylene glycol, respectively. Slight differences in selectivity to minor products are observed depending both on active metal and support. On γ-Al2O3, NiPt shows higher H2 and less alkane formation than Pt. TiO2 supported catalysts show increased water-gas shift activity but also increased selectivity to alkane precursors. NiPt/C is identified as an active and selective catalyst for EG reforming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2005) Appl Catal B 56:171–186

    Article  CAS  Google Scholar 

  2. Holladay JD, Hu J, King DL, Wang Y (2009) Catal Today 139:244–260

    Article  CAS  Google Scholar 

  3. Christiansen MA, Vlachos DG (2012) Appl Catal A 431–432:18–24

    Article  Google Scholar 

  4. Salciccioli M, Vlachos DG (2011) ACS Catal 1:1246–1256

    Article  CAS  Google Scholar 

  5. Salciccioli M, Yu WT, Barteau MA, Chen JG, Vlachos DG (2011) J Am Chem Soc 133:7996–8004

    Article  CAS  Google Scholar 

  6. Skoplyak O, Barteau MA, Chen JG (2008) ChemSusChem 1:524–526

    Article  CAS  Google Scholar 

  7. Skoplyak O, Barteau MA, Chen JG (2008) Surf Sci 602:3578–3587

    Article  CAS  Google Scholar 

  8. Skoplyak O, Barteau MA, Chen JG (2006) J Phys Chem B 110:1686–1694

    Article  CAS  Google Scholar 

  9. Yu W, Porosoff MD, Chen JG (2012) Chem Rev 112:5780–5817

    Article  CAS  Google Scholar 

  10. He R, Davda RR, Dumesic JA (2005) J Phys Chem B 109:2810–2820

    Article  CAS  Google Scholar 

  11. Kandoi S, Greeley J, Simonetti D, Shabaker J, Dumesic JA, Mavrikakis M (2011) ). J Phys Chem C 115:961–971

    Article  CAS  Google Scholar 

  12. Li SR, Zhang CX, Zhang P, Wu GW, Ma XB, Gong JL (2012) Phys Chem Chem Phys 14:4066–4069

    Article  CAS  Google Scholar 

  13. Dauenhauer PJ, Salge JR, Schmidt LD (2006) J Catal 244:238–247

    Article  CAS  Google Scholar 

  14. Ciftci A, Peng B, Jentys A, Lercher JA, Hensen EJM (2012) Appl Catal A 431–432:113–119

    Article  Google Scholar 

  15. Dietrich P, Lobo-Lapidus R, Wu T, Sumer A, Akatay M, Fingland B, Guo N, Dumesic J, Marshall C, Stach E, Jellinek J, Delgass W, Ribeiro F, Miller J (2012) Top Catal 55:53–69

    Article  CAS  Google Scholar 

  16. Huber GW, Shabaker JW, Evans ST, Dumesic JA (2006) Appl Catal B 62:226–235

    Article  CAS  Google Scholar 

  17. King DL, Zhang LA, Xia G, Karim AM, Heldebrant DJ, Wang XQ, Peterson T, Wang Y (2010) Appl Catal B 99:206–213

    Article  CAS  Google Scholar 

  18. Ravenelle RM, Copeland JR, Kim WG, Crittenden JC, Sievers C (2011) ACS Catal 1:552–561

    Article  CAS  Google Scholar 

  19. Shabaker JW, Huber GW, Davda RR, Cortright RD, Dumesic JA (2003) Catal Lett 88:1–8

    Article  CAS  Google Scholar 

  20. Shabaker JW, Davda RR, Huber GW, Cortright RD, Dumesic JA (2003) J Catal 215:344–352

    Article  CAS  Google Scholar 

  21. Liu J, Sun B, Hu JY, Pei Y, Li HX, Qiao MH (2010) J Catal 274:287–295

    Article  CAS  Google Scholar 

  22. Ji N, Zhang T, Zheng MY, Wang AQ, Wang H, Wang XD, Chen JG (2008) Angew Chem Int Ed 47:8510–8513

    Article  CAS  Google Scholar 

  23. Yue HR, Zhao YJ, Ma XB, Gong JL (2012) Chem Soc Rev 41:4218–4244

    Article  CAS  Google Scholar 

  24. Lonergan WW, Vlachos DG, Chen JG (2010) J Catal 271:239–250

    Article  CAS  Google Scholar 

  25. Tupy SA, Karim AM, Bagia C, Deng W, Huang Y, Vlachos DG, Chen JG (2012) ACS Catal 2:2290–2296

    Article  CAS  Google Scholar 

  26. de Vlieger DJM, Mojet BL, Lefferts L, Seshan K (2012) J Catal 292:239–245

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported from the Catalysis Center for Energy Innovation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001004.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingguang G. Chen or Dionisios G. Vlachos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tupy, S.A., Chen, J.G. & Vlachos, D.G. Comparison of Ethylene Glycol Steam Reforming Over Pt and NiPt Catalysts on Various Supports. Top Catal 56, 1644–1650 (2013). https://doi.org/10.1007/s11244-013-0099-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0099-x

Keywords

Navigation