Skip to main content
Log in

Short Vapour Residence Time Catalytic Pyrolysis of Spruce Sawdust in a Bubbling Fluidized-Bed Reactor with HZSM-5 Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Catalytic pyrolysis of spruce sawdust was carried out in a bubbling fluidized-bed reactor using HZSM-5 catalysts. The effects of space velocity, catalyst deactivation, catalyst acidity and catalyst regeneration were studied. The use of catalysts decreased the yield of organic liquids compared to non-catalytic yields while the yields of pyrolytic water and gases increased. Decreasing the space velocity enhanced these effects. The rate of catalyst deactivation depended on the acidity of the catalyst, with more acidic catalysts deactivating more rapidly. Using a catalyst with a Si/Al ratio of 140 resulted in the largest changes in bio-oil properties. Periodic regeneration of the catalyst in the fluidized-bed reactor was also demonstrated using varying regeneration times and temperatures. It was shown that compared to BFB reactors, CFB reactor types would offer better operating characteristics for commercial scale catalytic pyrolysis processes in regard to vapour residence times, and catalyst activity and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agblevor FA, Beis S, Mante O, Abdoulmoumine N (2010) Ind Eng Chem Res 49:3533

    Article  CAS  Google Scholar 

  2. Agblevor FA, Mante O, Abdoulmoumine N, McClung R (2010) Energy Fuels 24:4087

    Article  CAS  Google Scholar 

  3. Carlson TR, Tompsett G, Conner W, Huber GW (2009) Top Catal 52:241

    Article  CAS  Google Scholar 

  4. Carlson TR, Cheng YT, Jae J, Huber GW (2011) Energy Environ Sci 4:145

    Article  CAS  Google Scholar 

  5. Huber GW, Corma A (2007) Angew Chem Int Ed 46:7184

    Article  CAS  Google Scholar 

  6. Corma A, Huber GW, Sauvanaud L, O’Connor P (2007) J Catal 247:307

    Article  CAS  Google Scholar 

  7. Lappas AA, Bezergianni S, Vasalos IA (2009) Catal Today 145:55

    Article  CAS  Google Scholar 

  8. Fogassy G, Thegarid N, Toussaint G, van Veen AC, Schuurman Y, Mirodatos C (2010) Appl Catal B 96:476

    Article  CAS  Google Scholar 

  9. Aho A, Tokarev A, Backman P, Kumar N, Ernen K, Hupa M, Holmbom B, Salmi T, Murzin D (2011) Top Catal 54:941

    Article  CAS  Google Scholar 

  10. Carlson TR, Jae J, Lin YC, Tompsett GA, Huber GW (2010) J Catal 270:110

    Article  CAS  Google Scholar 

  11. Cheng YT, Jae J, Shi J, Fan W, Huber GW (2012) Angew Chem Int Ed 124:1416

    Article  Google Scholar 

  12. Jae J, Tompsett GA, Foster AJ, Hammond KD, Auerbach SM, Lobo RF, Huber GW (2011) J Catal 279:257

    Article  CAS  Google Scholar 

  13. Lappas AA, Samolada MC, Iatridis DK, Voutetakis SS, Vasalos IA (2002) Fuel 81:2087

    Article  CAS  Google Scholar 

  14. Mihalcik DJ, Mullen CA, Boateng AA (2011) J Anal Appl Pyrolysis 92:224

    Article  CAS  Google Scholar 

  15. Olazar M, Aguado R, Bilbao J, Barona A (2000) AlChE J 46:1025

    Article  CAS  Google Scholar 

  16. Williams PT, Nugranad N (2000) Energy 25:493

    Article  CAS  Google Scholar 

  17. Zhang H, Xiao R, Wang D, Zhong Z, Song M, Pan Q, He G (2009) Energy Fuels 23:1428

    Google Scholar 

  18. Zhang H, Xiao R, Huang H, Xiao G (2009) Bioresour Technol 100:1428

    Article  CAS  Google Scholar 

  19. Compton DL, Jackson MA, Mihalcik DJ, Mullen CA, Boateng AA (2011) J Anal Appl Pyrolysis 90:174

    Article  CAS  Google Scholar 

  20. French R, Czernik S (2010) Fuel Process Technol 91:25

    Article  CAS  Google Scholar 

  21. Jackson MA, Compton DL, Boateng AA (2009) J Anal Appl Pyrolysis 85:226

    Article  CAS  Google Scholar 

  22. Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Lappas AA, Pilavachi P (2011) Bioresour Technol 102:8261

    Article  CAS  Google Scholar 

  23. Torri C, Reinikainen M, Lindfors C, Fabbri D, Oasmaa A, Kuoppala E (2010) J Anal Appl Pyrolysis 88:7

    Article  CAS  Google Scholar 

  24. Park HJ, Heo HS, Jeon JK, Kim J, Ryoo R, Jeong KE, Park YK (2010) Appl Catal B 95:365

    Article  CAS  Google Scholar 

  25. Park HJ, Park KH, Jeon JK, Kim J, Ryoo R, Jeong KE, Park SH, Park YK (2012) Fuel 97:379

    Article  CAS  Google Scholar 

  26. Foster AJ, Jae J, Cheng YT, Huber GW, Lobo RF (2012) Appl Catal A 423–424:154

    Google Scholar 

  27. Mullen CA, Boateng AA, Mihalcik DJ, Goldberg NM (2011) Energy Fuels 25:5444

    Article  CAS  Google Scholar 

  28. Ma Z, Troussard E, van Bokhoven JA (2012) Appl Catal A 423–424:130

    Google Scholar 

  29. Mante OD, Agblevor FA, McClung R (2011) Biomass Conv Bioref 1:189

    Article  CAS  Google Scholar 

  30. Mante OD, Agblevor FA, Oyama ST, McClung R (2012) Bioresour Technol 111:482

    Article  CAS  Google Scholar 

  31. Scott DS, Piskorz J, Bergougnou MA, Graham R, Overend RP (1988) Ind Eng Chem Res 27:8

    Article  CAS  Google Scholar 

  32. Oasmaa A, Peacocke C (2010) Properties and fuel use of biomass-derived fast pyrolysis liquids. A guide. VTT Publications, Espoo, p 731

    Google Scholar 

  33. Oasmaa A, Korhonen J, Kuoppala E (2011) Energy Fuels 25:3307

    Article  CAS  Google Scholar 

  34. Oasmaa A, Elliott DC, Korhonen J (2010) Energy Fuels 24:6548

    Article  CAS  Google Scholar 

  35. Oasmaa A, Kuoppala E, Solantausta Y (2003) Energy Fuels 17:433

    Article  CAS  Google Scholar 

  36. Wang SJ, Liang J, Guo GW, Zhao LQ, Wang RH (1992) Chin J Catal 13:38

    Google Scholar 

  37. Kim YT, Jung K-D, Park ED (2010) Microporous Mesoporous Mater 131:28

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Jaana Korhonen, Sirpa Lehtinen, Elina Paasonen and Eeva Kuoppala are acknowledged for their analytical assistance. Juhana Ruotoistenmäki is acknowledged for his help in characterizing the catalysts. Tekes, the Finnish Funding Agency for Technology and Innovation is acknowledged for funding the research project ‘Pilot-scale development of new 2G BTL technologies based on gasification and pyrolysis’ under Contract Number 40441/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ville Paasikallio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paasikallio, V., Lindfors, C., Lehto, J. et al. Short Vapour Residence Time Catalytic Pyrolysis of Spruce Sawdust in a Bubbling Fluidized-Bed Reactor with HZSM-5 Catalysts. Top Catal 56, 800–812 (2013). https://doi.org/10.1007/s11244-013-0037-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0037-y

Keywords

Navigation