Skip to main content
Log in

Density Functional Theory Study of Selectivity Considerations for C–C Versus C–O Bond Scission in Glycerol Decomposition on Pt(111)

Topics in Catalysis Aims and scope Submit manuscript

Abstract

Glycerol decomposition via a combination of dehydrogenation, C–C bond scission, and C–O bond scission reactions is examined on Pt(111) with periodic Density Functional Theory (DFT) calculations. Building upon a previous study focused on C–C bond scission in glycerol, the current work presents a first analysis of the competition between C–O and C–C bond cleavage in this reaction network. The thermochemistry of various species produced from C–O bond breaking in glycerol dehydrogenation intermediates is estimated using an extension of a previously introduced empirical correlation scheme, with parameters fit to DFT calculations. Brønsted–Evans–Polanyi (BEP) relationships are then used to estimate the kinetics of C–O bond breaking. When combined with the previous results, the thermochemical and kinetic analyses imply that, while C–O bond scission may be competitive with C–C bond scission during the early stages of glycerol dehydrogenation, the overall rates are likely to be very low. Later in the dehydrogenation process, where rates will be much higher, transition states for C–C bond scission involving decarbonylation are much lower in energy than are the corresponding transition states for C–O bond breaking, implying that the selectivity for C–C scission will be high for glycerol decomposition on smooth platinum surfaces. It is anticipated that the correlation schemes described in this work will provide an efficient strategy for estimating thermochemical and kinetic energetics for a variety of elementary bond breaking processes on Pt(111) and may ultimately facilitate computational catalyst design for these and related catalytic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chheda JN, Huber GW, Dumesic JA (2007) Angew Chem Int Ed 46:7164

    Article  CAS  Google Scholar 

  2. Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C (2007) Angew Chem Int Ed 46:4434

    Article  CAS  Google Scholar 

  3. Corma A, Huber GW, Sauvanauda L, O’Connor P (2008) J Catal 257:163

    Article  CAS  Google Scholar 

  4. Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Green Chem 10:13

    Article  CAS  Google Scholar 

  5. Zhou CHC, Beltramini JN, Fan YX, Lu GQM (2008) Chem Soc Rev 37:527

    Article  Google Scholar 

  6. Brandner A, Lehnert K, Bienholz A, Lucas M, Claus P (2009) Top Catal 52:278

    Article  CAS  Google Scholar 

  7. Cortright RD, Davda RR, Dumesic JA (2002) Nature 418:964

    Article  CAS  Google Scholar 

  8. Klouz V, Fierro V, Denton P, Katz H, Lisse JP, Bouvot-Mauduit S, Mirodatos C (2002) J Power Sources 105:26

    Article  CAS  Google Scholar 

  9. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2003) Appl Catal B Environ 43:13

    Article  CAS  Google Scholar 

  10. Huber GW, Shabaker JW, Dumesic JA (2003) Sci 300:2075

    Article  CAS  Google Scholar 

  11. Soares RR, Simonetti DA, Dumesic JA (2006) Angew Chem Int Ed 45:3982

    Article  CAS  Google Scholar 

  12. Lulianelli A, Seelam PK, Liguori S, Longo T, Keiski R, Calabro V, Basile A (2011) Int J Hydrogen Energy 36:3827

    Article  Google Scholar 

  13. Dave CD, Pant KK (2011) Renew Energy 36:3195

    Article  CAS  Google Scholar 

  14. Gong CS, Du JX, Cao NJ, Tsao GT (2000) Appl Biochem Biotechnol 84–6:543

    Article  Google Scholar 

  15. Wilson EK (2002) Chem Eng News 80:46

    Article  Google Scholar 

  16. McCoy M (2006) Chem Eng News 84:33

    Article  Google Scholar 

  17. Morison LR (2000) Kirk–Othmer Encyclopedia of Chemical Technology. Wiley, New York

    Google Scholar 

  18. Shabaker JW, Huber GW, Dumesic JA (2004) J Catal 222:180

    Article  CAS  Google Scholar 

  19. Maris EP, Davis RJ (2007) J Catal 249:328

    Article  CAS  Google Scholar 

  20. Skoplyak O, Menning CA, Barteau MA, Chen JGG (2008) Top Catal 51:49

    Article  CAS  Google Scholar 

  21. Kunkes EL, Soares RR, Simonetti DA, Dumesic JA (2009) Appl Catal B Environ 90:693

    Article  CAS  Google Scholar 

  22. Wawrzetz A, Peng B, Hrabar A, Jentys A, Lemonidou AA, Lercher JA (2010) J Catal 269:411

    Article  CAS  Google Scholar 

  23. Pompeo F, Santori G, Nichio NN (2010) Int J Hydrogen Energy 35:8912

    Article  CAS  Google Scholar 

  24. Brown JC, Gulari E (2004) Catal Commun 5:431

    Article  CAS  Google Scholar 

  25. Shabaker JW, Davda RR, Huber GW, Cortright RD, Dumesic JA (2003) J Catal 215:344

    Article  CAS  Google Scholar 

  26. Greeley J, Mavrikakis M (2002) J Am Chem Soc 124:7193

    Article  CAS  Google Scholar 

  27. Alcala R, Mavrikakis M, Dumesic JA (2003) J Catal 218:178

    Article  CAS  Google Scholar 

  28. Greeley J, Mavrikakis M (2004) J Am Chem Soc 126:3910

    Article  CAS  Google Scholar 

  29. Kandoi S, Greeley J, Simonetti D, Shabaker J, Dumesic JA, Mavrikakis M (2010) J Phys Chem C 115:961

    Article  Google Scholar 

  30. Salciccioli M, Yu W, Barteau MA, Chen JG, Vlachos DG (2011) J Am Chem Soc 133:7996

    Article  CAS  Google Scholar 

  31. Chen Y, Salciccioli M, Vlachos DG (2011) J Phys Chem C 115:18707

    CAS  Google Scholar 

  32. Liu B, Greeley JP (2011) J Phys Chem C 115:19702

    Article  CAS  Google Scholar 

  33. Ferrin P, Simonetti D, Kandoi S, Kunkes E, Dumesic JA, Norskov JK, Mavrikakis M (2009) J Am Chem Soc 131:5809

    Article  CAS  Google Scholar 

  34. Skoplyak O, Barteau MA, Chen JG (2008) ChemSusChem 1:524

    Article  CAS  Google Scholar 

  35. Auneau F, Michel C, Delbecq F, Pinel C, Sautet P (2011) Chem Eur J 17:14288

    Article  CAS  Google Scholar 

  36. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  37. Kresse G, Hafner J (1994) Phys Rev B 49:14251

    Article  CAS  Google Scholar 

  38. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  39. Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  40. Blochl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  41. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  42. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  43. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1993) Phys Rev B 48:4978

    Article  CAS  Google Scholar 

  44. Kittel C (1996) Introduction to solid state Physics. John Wiley, New York

    Google Scholar 

  45. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  46. Methfessel M, Paxton AT (1989) Phys Rev B 40:3616

    Article  CAS  Google Scholar 

  47. Makov G, Payne MC (1995) Phys Rev B 51:4014

    Article  CAS  Google Scholar 

  48. Henkelman G, Johannesson G, Jonsson H (2000) Progress on theoretical chemistry and physics. Kluwer, New York, p 269

  49. Henkelman G, Jonsson H (2000) J Chem Phys 113:9978

    Article  CAS  Google Scholar 

  50. Henkelman G, Jonsson H (1999) J Chem Phys 111:7010

    Article  CAS  Google Scholar 

  51. Olsen RA, Kroes GJ, Henkelman G, Arnaldsson A, Jonsson H (2004) J Chem Phys 121:9776

    Article  CAS  Google Scholar 

  52. Shustorovich E (1984) J Am Chem Soc 106:6479

    Article  CAS  Google Scholar 

  53. Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skulason E, Bligaard T, NørskovJ K (2007) Phys Rev Lett 99:016105

    Article  CAS  Google Scholar 

  54. Greeley J, Mavrikakis M (2002) J Catal 208:291

    Article  CAS  Google Scholar 

  55. Salciccioli M, Chen Y, Vlachos DG (2010) J Phys Chem C 114:20155

    Article  CAS  Google Scholar 

  56. Daniel OM, DeLaRiva A, Kunkes EL, Datye AK, Dumesic JA, Davis RJ (2010) Chemcatchem 2:1107

    Article  CAS  Google Scholar 

  57. Maris EP, Ketchie WC, Murayama M, Davis RJ (2007) J Catal 251:281

    Article  CAS  Google Scholar 

  58. Nakagawa Y, Shinmi Y, Koso S, Tomishige K (2010) J Catal 272:191

    Article  CAS  Google Scholar 

  59. Chia M, Pagan-Torres YJ, Hibbitts D, Tan Q, Pham HN, Datye AK, Neurock M, Davis RJ, Dumesic JA (2011) J Am Chem Soc 133:12675

    Article  CAS  Google Scholar 

  60. Miyazawa T, Kusunoki Y, Kunimori K, Tomishige K (2006) J Catal 240:213

    Article  CAS  Google Scholar 

  61. Gandarias I, Arias PL, Requies J, Guemez MB, Fierro JLG (2010) Appl Catal B Environ 97:248

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Use of the Center for Nanoscale Materials (CNM) is supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-06CH11357. We acknowledge grants of computer time from EMSL, a national scientific user facility located at Pacific Northwest National Laboratory, and the Argonne Laboratory Computing Resource Center (LCRC). This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Greeley.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 435 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Greeley, J. Density Functional Theory Study of Selectivity Considerations for C–C Versus C–O Bond Scission in Glycerol Decomposition on Pt(111). Top Catal 55, 280–289 (2012). https://doi.org/10.1007/s11244-012-9806-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9806-2

Keywords

Navigation