Skip to main content
Log in

Effect of Particle Size and Adsorbates on the L3, L2 and L1 X-ray Absorption Near Edge Structure of Supported Pt Nanoparticles

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Pt nano-particles from about 1 to 10 nm have been prepared on silica, alkali-silica, alumina, silica-alumina, carbon and SBA-15 supports. EXAFS spectra of the reduced catalysts in He show a contraction of the Pt–Pt bond distance as particle size is decreased below 3 nm. The bond length decreased as much as 0.13 Å for 1 nm Pt particles. Adsorption of CO and H2 lead to a increase in Pt–Pt bond distance to that near Pt foil, e.g., 2.77 Å. In addition to changes in the Pt bond distance with size, as the particle size decreases below about 5 nm there is a shift in the XANES to higher energy at the L3 edge, a decrease in intensity near the edge and an increase in intensity beyond the edge. We suggest these features correspond to effects of coordination (the decrease at the edge) and lattice contraction (the increase beyond the edge). At the L2 edge, there are only small shifts to higher energy at the edge. However, beyond the edge, there are large increases in intensity with decreasing particle size. At the L1 edge there are no changes in position or shape of the XANES spectra. Adsorption of CO and H2 also lead to changes in the L3 and L2 edges, however, no changes are observed at the L1 edge. Density Functional Theory and XANES calculations show that the trends in the experimental XANES can be explained in terms of the states available near the edge. Both CO and H2 adsorption result in a depletion of states at the Fermi level but the creation of anti-bonding states above the Fermi level which give rise to intensity increases beyond the edge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Heiz U, Bullock EL (2004) J Mater Chem 14:564–577

    Article  CAS  Google Scholar 

  2. Koningsberger DC, Mojet BL, van Dorssen GE, Ramaker DE (2000) Top Catal 10:143–155

    Article  CAS  Google Scholar 

  3. Ramaker DE, Koningsberger DC (2010) Phys Chem Chem Phys 12:5514–5534

    Article  CAS  Google Scholar 

  4. Lytle FW, Wei PSP, Greegor RB, Via GH, Sinfelt JH (1979) J Chem Phys 70:4849–4855

    Article  CAS  Google Scholar 

  5. Short DR, Mansour AN, Cook JW, Sayers DE, Katzer JR (1983) J Catal 82:299–312

    Article  CAS  Google Scholar 

  6. Ichikuni N, Iwasawa Y (1993) Catal Lett 20:87–95

    Article  CAS  Google Scholar 

  7. Mansour AN, Cook JW, Sayers DE (1984) J Phys Chem 88:2330–2334

    Article  CAS  Google Scholar 

  8. Ankudinov AL, Rehr JJ, Low JJ, Bare SR (2002) Top Catal 18:3–7

    Article  CAS  Google Scholar 

  9. Ankudinov AL, Rehr JJ, Low JJ, Bare SR (2002) J Chem Phys 116:1911–1919

    Article  CAS  Google Scholar 

  10. Schweitzer N, Xin H, Nikolla E, Linic S, Miller J (2010) Top Catal 53:348–356

    Article  CAS  Google Scholar 

  11. Lewis PH (1968) J Catal 11:162–174

    Article  CAS  Google Scholar 

  12. Samant MG, Boudart M (1991) J Phys Chem 95:4070–4074

    Article  CAS  Google Scholar 

  13. Kubota T, Asakura K, Ichikuni N, Iwasawa Y (1996) Chem Phys Lett 256:445–448

    Article  CAS  Google Scholar 

  14. Ramaker DE, Mojet BL, Oostenbrink MTG, Miller JT, Koningsberger DC (1999) Phys Chem Chem Phys 1:2293–2302

    Article  CAS  Google Scholar 

  15. Ankudinov AL, Rehr JJ, Low J, Bare SR (2001) Phys Rev Lett 86:1642–1645

    Article  CAS  Google Scholar 

  16. Reifsnyder SN, Otten MM, Sayers DE, Lamb HH (1997) J Phys Chem B 101:4972–4977

    Article  CAS  Google Scholar 

  17. Scott FJ, Mukerjee S, Ramaker DE (2010) J Phys Chem C 114:442–453

    Article  CAS  Google Scholar 

  18. Roth C, Benker N, Buhrmester T, Mazurek M, Loster M, Fuess H, Koningsberger DC, Ramaker DE (2005) J Am Chem Soc 127:14607–14615

    Article  CAS  Google Scholar 

  19. Scott FJ, Roth C, Ramaker DE (2007) J Phys Chem C 111:11403–11413

    Article  CAS  Google Scholar 

  20. Lewis EA, Segre CU, Smotkin ES (2009) Electrochim Acta 54:7181–7185

    Article  CAS  Google Scholar 

  21. Dimakis N, Iddir H, Diaz-Morales RR, Liu RX, Bunker G, Chung EH, Smotkin ES (2005) J Phys Chem B 109:1839–1848

    Article  CAS  Google Scholar 

  22. Bus E, Ramaker DE, van Bokhoven JA (2007) J Am Chem Soc 129:8094–8102

    Article  CAS  Google Scholar 

  23. Teliska A, O’Grady WE, Ramaker DE (2005) J Phys Chem B 109:8076–8084

    Article  CAS  Google Scholar 

  24. Teliska M, Murthi VS, Mukerjee S, Ramaker DE (2005) J Electrochem Soc 152:A2159–A2169

    Article  Google Scholar 

  25. Teliska M, Murthi VS, Mukerjee S, Ramaker DE (2007) J Phys Chem C 111:9267–9274

    Article  CAS  Google Scholar 

  26. Teliska M, O’Grady WE, Ramaker DE (2004) J Phys Chem B 108:2333–2344

    Article  CAS  Google Scholar 

  27. Asakura K, Kubota T, Chun WJ, Iwasawa Y, Ohtani K, Fujikawa T (1999) J Synchrotron Radiat 6:439–441

    Article  CAS  Google Scholar 

  28. Safonova OV, Tromp M, van Bokhoven JA, de Groot FMF, Evans J, Glatzel P (1616) J. Phys Chem B 110(2006):16162–16164

    Google Scholar 

  29. Kubota T, Asakura K, Iwasawa Y (1997) Catal Lett 46:141–144

    Article  CAS  Google Scholar 

  30. Kang JH, Menard LD, Nuzzo RG, Frenkel AI (2006) J Am Chem Soc 128:12068–12069

    Article  CAS  Google Scholar 

  31. Stoupin S (2009) J Chem Theory Comput 5:1337–1342

    Article  CAS  Google Scholar 

  32. Guo N, Fingland BR, Williams WD, Kispersky VF, Jelic J, Delgass WN, Ribeiro FH, Meyer R, Miller JT (2010) Phys Chem Chem Phys 12:5678–5693

    Article  CAS  Google Scholar 

  33. Rioux RM, Hsu BB, Grass ME, Song H, Somorjai GA (2008) Catal Lett 126:10–19

    Article  CAS  Google Scholar 

  34. Miller JT, Kropf AJ, Zha Y, Regalbuto JR, Delannoy L, Louis C, Bus E, van Bokhoven JA (2006) J Catal 240:222–234

    Article  CAS  Google Scholar 

  35. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) J Phys Condens Matter 14:2717–2744

    Article  CAS  Google Scholar 

  36. Vanderbilt D (1990) Phys Rev B 41:7892–7895

    Article  Google Scholar 

  37. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

  38. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  39. Gao SP, Pickard CJ, Perlov A, Milman V (2009) J Phys Condens Matter 21:104203

    Article  Google Scholar 

  40. Gao SP, Pickard CJ, Payne MC, Zhu J, Yuan J (2008) Phys Rev B 77:115122

    Article  Google Scholar 

  41. Seabourne CR, Scott AJ, Brydson R, Nicholls RJ (2009) Ultramicroscopy 109:1374–1388

    Article  CAS  Google Scholar 

  42. Feibelman PJ, Hammer B, Norskov JK, Wagner F, Scheffler M, Stumpf R, Watwe R, Dumesic J (2001) J Phys Chem B 105:4018–4025

    Article  CAS  Google Scholar 

  43. Kumar V, Kawazoe Y (2008) Phys Rev B 77:205418

    Article  Google Scholar 

  44. Hu CH, Chizallet C, Mager-Maury C, Corral-Valero M, Sautet P, Toulhoat H, Raybaud P (2010) J Catal 274:99–110

    Article  CAS  Google Scholar 

  45. Vaarkamp M, Miller JT, Modica FS, Koningsberger DC (1996) J Catal 163:294–305

    Article  CAS  Google Scholar 

  46. Nepijko SA, Klimenkov M, Adelt M, Kuhlenbeck H, Schlogl R, Freund HJ (1999) Langmuir 15:5309–5313

    Article  CAS  Google Scholar 

  47. Vila F, Rehr JJ, Kas J, Nuzzo RG, Frenkel AI (2008) Phys Rev B 78:121404

    Article  Google Scholar 

  48. Tew MW, Miller JT, van Bokhoven JA (2009) J Phys Chem C 113:15140–15147

    Article  CAS  Google Scholar 

  49. Williams MF, Fonfe B, Woltz C, JentyS A, van Veen JAR, Lercher JA (2007) J Catal 251:497–506

    Article  CAS  Google Scholar 

  50. Ramallo-Lopez JM, Santori GF, Giovanetti L, Casella ML, Ferretti OA, Requejo FG (2003) J Phys Chem B 107:11441–11451

    Article  CAS  Google Scholar 

  51. Stakheev AY, Zhang Y, Ivanov AV, Baeva GN, Ramaker DE, Koningsberger DC (2007) J Phys Chem C 111:3938–3948

    Article  CAS  Google Scholar 

  52. Nikolla E, Schwank J, Linic S (2009) J Am Chem Soc 131:2747–2754

    Article  CAS  Google Scholar 

  53. Muller DA, Singh DJ, Silcox J (1998) Phys Rev B 57:8181–8202

    Article  CAS  Google Scholar 

  54. Ching WY, Rulis P (2009) J Phys Condens Matter 21:104202

    Article  Google Scholar 

  55. Keast VJ, Scott AJ, Brydson R, Williams DB, Bruley J (2001) J Microsc 203:135–175

    Article  CAS  Google Scholar 

  56. Muller DA (1998) Phys Rev B 58:5989–5995

    Article  CAS  Google Scholar 

  57. Hammer B (2006) Top Catal 37:3–16

    Article  CAS  Google Scholar 

  58. Hammer B, Norskov JK (2000) Adv Catal 45:71–129

    Article  CAS  Google Scholar 

  59. Zhao Y, Feltes TE, Regalbuto JR, Meyer RJ, Klie RF (2010) J Appl Phys 108:063704

    Article  Google Scholar 

  60. Ankudinov AL, Nesvizhskii AI, Rehr JJ (2001) J Synchrotron Radiat 8:92–95

    Article  CAS  Google Scholar 

  61. van Bokhoven JA, Miller JT (2007) J Phys Chem C 111:9245–9249

    Article  Google Scholar 

  62. Mason MG (1983) Phys Rev B 27:748–762

    Article  CAS  Google Scholar 

  63. Bus E, van Bokhoven JA (2007) J Phys Chem C 111:9761–9768

    Article  CAS  Google Scholar 

  64. Richter B, Kuhlenbeck H, Freund HJ, Bagus PS (2004) Phys Rev Lett 93:026805

    Article  CAS  Google Scholar 

  65. Boyanov BI, Morrison TI (1996) J Phys Chem 100:16318–16326

    Article  CAS  Google Scholar 

  66. Blyholder G (1964) J Phys Chem 60:2772–2778

    Article  Google Scholar 

  67. Henkelman G, Arnaldsson A, Jonsson H (2006) Comput Mater Sci 36:354–360

    Article  Google Scholar 

  68. Kresse G, Gil A, Sautet P (2003) Phys Rev B 68:073401

    Article  Google Scholar 

  69. Ankudinov AL, Rehr JJ, Bare SR (2000) Chem Phys Lett 316:495–500

    Article  CAS  Google Scholar 

  70. Poelsema B, Palmer RL, Comsa G (1982) Surf Sci 123:152–164

    Article  CAS  Google Scholar 

Download references

Acknowledgments

RJM would like to acknowledge the generous grants for computational time on Jazz and Fusion at Argonne National Lab. Use of the Advanced Photon Source is supported by the U. S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. In addition, RJM would like to acknowledge the Department of Energy for use of Advanced Photon Source at Argonne National Lab associated with GU-8689. RJM also acknowledges the National Science Foundation for their partial support of this work through CBET grant #0747646. Finally, RJM, JJ and JTM would like to thank Suljo Linic and Hongliang Xin of the University of Michigan for the thoughtful discussions of these results and without whom this work would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Randall Meyer or Jeffrey Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, Y., Jelic, J., Nitsche, L.C. et al. Effect of Particle Size and Adsorbates on the L3, L2 and L1 X-ray Absorption Near Edge Structure of Supported Pt Nanoparticles. Top Catal 54, 334–348 (2011). https://doi.org/10.1007/s11244-011-9662-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-011-9662-5

Keywords

Navigation