Skip to main content
Log in

Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

We investigated the effects of plant growth regulators [6-benzyladenine (BA), kinetin (Kin), 6-γ,γ-dimethylallylaminopurine (2iP), thidiazuron (TDZ) and α-naphthaleneacetic acid (NAA)], modified Murashige and Skoog (MS) medium containing 10 mM NH4 + and 5 mM NO3 and supplemented with 2iP, BA, Kin and NAA (MSM medium), and two elicitors [jasmonic acid (JA), and salicylic acid (SA)], on plant growth and accumulation of hypericins (hypericin and pseudohypericin) and hyperforin in shoot cultures of Hypericum hirsutum and H. maculatum. Our data suggested that culture of shoots on MS medium supplemented with BA (0.4 mg l−1) or Kin (0.4 mg l−1) enhanced production of hypericins in H. maculatum and hyperforin in H. hirsutum. Hypericins and hyperforin concentrations decreased in both species when TDZ (0.4 mg l−1) was added to the MS medium. Also, TDZ induced hyperhydric malformations and necrosis of regenerated shoots. Cultivation of H. maculatum on MSM medium resulted in approximately twofold increased production of hypericins compared to controls, and the growth of H. hirsutum shoots on the same medium led to a 6.16-fold increase in hyperforin production. Of the two elicitors, SA was more effective in stimulating the accumulation of hypericins. At 50 μM, SA enhanced the production of hypericin (7.98-fold) and pseudohypericin (13.58-fold) in H. hirsutum, and, at 200 μM, enhanced the production of hypericin (2.2-fold) and pseudohypericin (3.94-fold) in H. maculatum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bacila I, Coste A, Halmagyi A, Deliu C (2010) Micropropagation of Hypericum maculatum Cranz an important medicinal plant. Romanian Biotechnol Lett 15:86–91

    CAS  Google Scholar 

  • Baebler Š, Hren M, Camloh M, Ravnikar M, Bohanec B, Plaper I, Ucman R, Žel J (2005) Establishment of cell suspension cultures of yew (Taxus × media REHD.) and assessment of their genomic stability. In vitro Cell Dev Bio Plant 41:338–343

    Article  CAS  Google Scholar 

  • Bagdonaitė E, Kazlauskas S (2006) Secondary metabolites variation in Hypericum maculatum. Acta Biol Univ Daugavp 6:39–44

    Google Scholar 

  • Bruni R, Sacchetti G (2009) Factors affecting polyphenol biosynthesis in wild and field grown St. John’s Wort (Hypericum perforatum L. Hypericaceae/Guttiferae). Molecules 14:682–725

    Article  PubMed  CAS  Google Scholar 

  • Čellárová E (2003) Culture and biotechnology of Hypericum. In: Ernst E (ed) Hypericum: the genus Hypericum, medicinal and aromatic plants—industrial profiles, vol 31. CRC, New York, pp 65–76

    Google Scholar 

  • Čellárová E, Kimákova K, Brutóvska R (1992) Multiple shoot formation and phenotypic changes of R0 regenerants in Hypericum perforatum L. Acta Biotechnol 12:445–452

    Article  Google Scholar 

  • Charchoglyan A, Abrahamyan A, Fujii I, Boubakir Z, Gulder TAM, Kutchan TM, Vardapetyan H, Bringmann G, Ebizuka Y, Beerhues L (2007) Differential accumulation of hyperforin and secohyperforin in Hypericum perforatum tissue cultures. Phytochemistry 68:2670–2677

    Article  PubMed  CAS  Google Scholar 

  • Conceição LFR, Ferreres Tavares RM, Dias ACP (2006) Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation. Phytochemistry 67:149–155

    Article  PubMed  Google Scholar 

  • Cui XH, Murthy HN, Wu CH, Paek KY (2010) Adventitious root suspension cultures of Hypericum perforatum: effect of nitrogen source on production of biomass and secondary metabolites. In vitro Cell Dev Biol Plant 46:437–444

    Article  CAS  Google Scholar 

  • Don Palmer C, Keller WA (2010) Plant regeneration from petal explants of Hypericum perforatum L. Plant Cell Tiss Organ Cult. doi:10.1007/s11240-010-9839-9

    Google Scholar 

  • Franklin G, Dias ACP (2006) Organogenesis and embryogenesis in several Hypericum perforatum genotypes. In vitro Cell Dev Biol Plant 42:324–330

    Article  CAS  Google Scholar 

  • Gadzovska S, Maury S, Ounnar S, Righezza M, Kascakova S, Refregiers M, Spasenoski M, Joseph C, Hagège D (2005) Identification and quantification of hypericin and pseudohypericin in different Hypericum perforatum L. in vitro cultures. Plant Physiol Biochem 43:591–601

    Article  PubMed  CAS  Google Scholar 

  • Gadzovska S, Maury S, Delaunay A, Spasenoski M, Joseph C, Hagège D (2007) Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant Cell Tiss Organ Cult 89:1–13

    Article  CAS  Google Scholar 

  • Gao-Bin P, Dong-Ming M, Jian-Lin C, Lan-Qing M, Hong W, Guo-Feng L, He-Chun Y, Liu BY (2009) Salicylic acid activates artemisinin biosynthesis in Artemisia annua L. Plant Cell Rep 28:1127–1135

    Article  Google Scholar 

  • Goel MK, Kukreja AK, Bisht NS (2009) In vitro manipulations in St. John’s wort (Hypericum perforatum L.) for incessant and scale up micropropagation using adventitious roots in liquid medium and assessment of clonal fidelity using RAPD analysis. Plant Cell Tiss Organ Cult 96:1–9

    Article  Google Scholar 

  • Gudžić BT, Smelcerovic A, Dordevic S, Mimica-Dukic N, Ristic M (2007) Essential oil composition of Hypericum hirsutum L. Flavour Fragr J 22:42–43

    Article  Google Scholar 

  • Ivanova M, Van Staden J (2008) Effect of ammonium ions and cytokinins on hyperhydricity and multiplication rate of in vitro regenerated shoots of Aloe polyphylla. Plant Cell Tiss Org Cult 92:227–231

    Article  CAS  Google Scholar 

  • Ivanova M, Van Staden J (2009) Nitrogen source, concentration, and NH4 +:NO3 ratio influence shoot regeneration and hyperhydricity in tissue cultured Aloe polyphylla. Plant Cell Tiss Organ Cult 99:167–174

    Article  CAS  Google Scholar 

  • Ivanova M, Van Staden J (2010) Influence of gelling agent and cytokinins on the control of hyperhydricity in Aloe polyphylla. Plant Cell Tiss Organ Cult 23:5–7. doi:10.1007/s11240-010-9794-5

    Google Scholar 

  • Karioti A, Bilia AR (2010) Hypericins as potential leads for new therapeutics. Int J Mol Sci 11:562–594

    Article  PubMed  CAS  Google Scholar 

  • Karppinen K, György Z, Kauppinen M, Tolonen A, Jalonen J, Neubauer P, Hohtola A, Häggman H (2006) In vitro propagation of Hypericum perforatum L. and accumulation of hypericins, pseudohypericins and phloroglucinols. Prop Orn Plants 6:170–179

    Google Scholar 

  • Kartnig T, Göbel I (1992) Hypericin and pseudohypericin in cell cultures of various Hypericum species and chemotypes. Planta Med 58:579–580

    Article  Google Scholar 

  • Kartnig T, Göbel I, Heydel B (1996) Production of hypericin, pseudohypericin and flavonoids in cell cultures of various Hypericum species and their chemotipes. Planta Med 62:51–53

    Article  PubMed  CAS  Google Scholar 

  • Kim OT, Bang KH, In DS, Kim TS, Seong NS, Cha SW, Ahn JC, Hwang B (2006) Micropropagation of Hypericum erectum Thunberg by using Thidiazuron. Korean J Medicinal Crop Sci 14:278–281

    Google Scholar 

  • Kirakosyan A, Sirvent TM, Gibson DM, Kaufman PB (2004) The production of hypericins and hyperforin by in vitro cultures of St. John’s wort (Hypericum perforatum). Biotechnol Appl Biochem 39:71–81

    Article  PubMed  CAS  Google Scholar 

  • Kirakosyan A, Gibson DM, Kaufman PB (2008) The production of dianthrones and phloroglucinol derivatives in St. John’s Wort. In: Ramawat KG, Mérillon JM (eds) Bioactive molecules and medicinal plants. Springer, Berlin, pp 149–164

    Chapter  Google Scholar 

  • Koperdáková J, Katkovèinová Z, Košuth J, Giovannini A, Čellárová E (2009) Morphogenetic response to plant growth regulators in transformed and untransformed Hypericum perforatum L. clones. Acta Biol Cracov Ser Bot 51:1–70

    Google Scholar 

  • Kusari S, Zühlke S, Borsch T, Spiteller M (2009) Positive correlations between hypericin and putative precursors detected in the quantitative secondary metabolite spectrum of Hypericum. Phytochemistry 70:1222–1232

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Zhong JJ (1997) Simultaneous production of ginseng saponin and polysaccharide by suspension cultures of Panax ginseng: nitrogen effects. Enzyme Microb Technol 21:518–524

    Article  CAS  Google Scholar 

  • Liu XN, Zhang XQ, Sun JS (2007a) Effects of cytokinins and elicitors on the production of hypericins and hyperforin metabolites in Hypericum sampsonii and Hypericum perforatum. Plant Growth Regul 53:207–214

    Article  CAS  Google Scholar 

  • Liu XN, Zhang XQ, Zhang SX, Sun JS (2007b) Regulation of metabolite production by precursors and elicitors in liquid cultures of Hypericum perforatum. Plant Cell Tiss Organ Cult 91:1–7

    Article  CAS  Google Scholar 

  • Mártonfi P, Repčák M, Zanvit P (2006) Secondary metabolites variation in Hypericum maculatum and its relatives. Biochem Syst Ecol 34:56–59

    Article  Google Scholar 

  • Mehrotra S, Goel MK, Kukreja AK, Mishra BN (2007) Efficiency of liquid culture systems over conventional micropropagation: A progress towards commercialization. Afr J Biotechnol 6:1484–1492

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Namedo AG (2007) Plant cell elicitation for production of secondary metabolites: A review. Pharmacogn Rev 1:69–79

    Google Scholar 

  • Pan XW, Xu HH, Liu X, Gao X, Lu YT (2004) Improvement of growth and camptothecin yield by altering nitrogen source supply in cell suspension cultures of Camptotheca acuminata. Biotechnol Lett 26:1745–1748

    Article  PubMed  CAS  Google Scholar 

  • Qian ZG, Zhao ZJ, Xu Y, Qian X, Zhong JJ (2006) Novel chemically synthesized salicylate derivative as an effective elicitor for inducing the biosynthesis of plant secondary metabolites. Biotechnol Prog 22:331–333

    Article  PubMed  CAS  Google Scholar 

  • Robson NKB (2002) Studies in the genus Hypericum L. (Guttiferae) 4(2). Section 9. Hypericum sensu lato (part 2): subsection 1. Hypericum series 1. Hypericum. Bull Nat Hist Mus London Bot 32:61–123

    Google Scholar 

  • Santarem ER, Astarita LV (2003) Multiple shoot formation in Hypericum perforatum L. and hypericin production. Brazilian J Plant Physiol 15:21–26

    Google Scholar 

  • Sirvent TM, Gibson DM (2002) Induction of hypericins and hyperforin in Hypericum perforatum L. in response to biotic and chemical elicitors. Physiol Mol Plant Path 60:311–320

    CAS  Google Scholar 

  • Smelcerovic A, Verma V, Spiteller M, Ahmad SM, Puri SC, Qazi GN (2006) Phytochemical analysis and genetic characterization of six Hypericum species from Serbia. Phytochemistry 67:171–177

    Article  PubMed  CAS  Google Scholar 

  • Smelcerovic A, Spiteller M, Ligon AP, Smelcerovic Z, Raabe N (2007) Essential oil composition of Hypericum L. species from Southeastern Serbia and their chemotaxonomy. Biochem Syst Ecol 35:99–113

    Article  CAS  Google Scholar 

  • Soelberg J, Jørgensen LB, Jäger AK (2007) Hyperforin accumulates in the translucent glands of Hypericum perforatum. Ann Bot 99:1097–1100

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi S, Nakamura N, Nose M, Takeda S, Yabu-uchi R, Ito H, Yoshida T, Yazaki K (1998) Production of macrocyclic ellagitannin oligomers by Oenothera laciniata callus cultures. Phytochemistry 48:981–985

    Article  PubMed  CAS  Google Scholar 

  • Walker TS, Bais HP, Vivanco JM (2002) Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort). Phytochemistry 60:289–293

    Article  PubMed  CAS  Google Scholar 

  • Yu KW, Gao WY, Hahn EJ, Paek KY (2002) Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochem Eng J 11:211–215

    Article  CAS  Google Scholar 

  • Yu ZZ, Fu CX, Han YS, Li YX, Zhao DX (2006) Salicylic acid enhances jaceosidin and syringin production in cell cultures of Saussurea medusa. Biotechnol Lett 28:1027–1031

    Article  PubMed  CAS  Google Scholar 

  • Ziv M, Ronen G, Raviv M (1998) Proliferation of meristematic clusters in disposable presterlized plastic bioreactors for large scale micropropagation of plants. In vitro Cell Dev Biol Plant 34:152–158

    Article  Google Scholar 

  • Zobayed SMA, Murch SJ, Rupasinghe HPV, Saxena PK (2004) In vitro production and chemical characterization of St. John’s wort (Hypericum perforatum L. cv ‘New stem’). Plant Sci 166:333–340

    Article  CAS  Google Scholar 

  • Zobayed SMA, Afreen F, Goto E, Kozai T (2006) Plant-environment interactions: Accumulation of hypericin in dark glands of Hypericum perforatum. Ann Bot 98:793–804

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study has been supported by a research project (Nr. 61005/2007) from the Romanian Ministry of Education and Research and the National Centre for Programme Management. The authors also gratefully acknowledge the support of Dr. Eng. Dragos Postolache from the Forest Genetics Group of ICAS Simeria, Romania, in processing the statistical data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Coste.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coste, A., Vlase, L., Halmagyi, A. et al. Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum . Plant Cell Tiss Organ Cult 106, 279–288 (2011). https://doi.org/10.1007/s11240-011-9919-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-9919-5

Keywords

Navigation