Skip to main content
Log in

Upregulation of ginsenoside and gene expression related to triterpene biosynthesis in ginseng hairy root cultures elicited by methyl jasmonate

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

In this study, methyl jasmonate (MJ)-induced changes of triterpene saponins in ginseng (Panax ginseng C.A. Meyer) hairy roots and expression profiling of relevant responsive genes were analyzed. The transcription of PgSS (squalene synthase), PgSE (squalene epoxidase), and PNA (dammarenediol synthase-II) genes in hairy root cultures elicited by MJ treatment increased as compared with the controls, whereas that of PNX (cycloartenol synthase) decreased slightly. In order to select candidate genes encoding for cytochrome P450-dependent hydroxylase or glucosyltransferase associated with triterpene biosynthesis, RT-PCR analysis was conducted following MJ elicitation. No differences were observed in any expression among the five genes associated with the cytochrome P450 family, when compared to that of control. For candidates of the glucosyltransferase gene,expression of EST IDs PG07020C06, PG07025D04, and PG07029G02 was upregulated. In an effort to assess the effects of MJ elicitation on the biosynthesis of triterpene saponin, protopanaxadiol saponin (Rb group) and protopanaxatriol saponin (Rg group) contents in hairy roots were evaluated by HPLC analysis. With 7 days of MJ elicitation, levels of all ginseonsides of the two-groups increased much higher than that observed in the control. In particular, protopanaxadiol-type saponin contents increased by 5.5–9.7 times that of the control, whereas protopanaxatriol-type saponin contents were increased by 1.85–3.82-fold. In the case of Rg1 ginsenoside after MJ elicitation, the content was affected negatively in ginseng hairy root cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MJ:

Methyl jasmonate

PgFPS:

Farnesyl diphosphate synthase

PgSS:

Squalene synthase

PgSE:

Squalene epoxidase

PNA:

Dammarenediol-II synthase

PNY:

β-Amyrin synthase

PNX:

Cycloartenol synthase

References

  • Achnine L, Huhman DV, Farag MA, Sumner LW, Blount JW, Dixon RA (2005) Genomic-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula. Plant J 41:875–887. doi:10.1111/j.1365-313X.2005.02344.x

    Article  PubMed  CAS  Google Scholar 

  • Bae KH, Choi YE, Shin CG, Kim YY, Kim YS (2006) Enhanced ginsenoside productivity by combination of ethephon and methyl jasmonate in ginseng (Panax ginseng C.A. Meyer) adventitious root cultures. Biotechnol Lett 28:1163–1166. doi:10.1007/s10529-006-9071-1

    Article  PubMed  CAS  Google Scholar 

  • Bang KH, Kim OT, Jung SJ, Kim YC, Park HW, Cha SW (2009) Molecular characterization of ginseng farnesyl diphosphate synthase gene and its up-regulation by methyl jasmonate. Biol Plant (in press)

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Briskin DP (2000) Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol 124:507–514. doi:10.1104/pp.124.2.507

    Article  PubMed  CAS  Google Scholar 

  • Choi DW, Jung JD, Ha YI, Park HW, In DS, Chung HJ, Liu JR (2005) Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Rep 23:557–566. doi:10.1007/s00299-004-0845-4

    Article  PubMed  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381. doi:10.1146/annurev.arplant.48.1.355

    Article  PubMed  CAS  Google Scholar 

  • Daudonnet S, Karst F, Tourte Y (1997) Expression of the farnesyl diphosphate synthase gene of Saccharomyces cerevisiae in tobacco. Mol Breed 3:137–145. doi:10.1023/A:1009685032495

    Article  CAS  Google Scholar 

  • Gorpenchenko TY, Kiselev KV, Bulgakov VP, Tchernoded GK, Bragina EA, Khodakovskaya MV, Koren OG, Batygina TB, Zhuravlev YN (2006) The Agrobacterium rhizogenes rolC-gene-induced somatic embryogenesis and shoot organogenesis in Panax ginseng transformed calluses. Planta 223:457–467. doi:10.1007/s00425-005-0102-2

    Article  PubMed  CAS  Google Scholar 

  • Han JY, Kwon YS, Yang DC, Jung YR, Choi YE (2006) Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng. Plant Cell Physiol 47:1653–1662. doi:10.1093/pcp/pcl032

    Article  PubMed  CAS  Google Scholar 

  • Hu FX, Zhong JJ (2007) Role of jasmonic acid in alteration of ginsenoside heterogeneity in elicited cell cultures of Panax notoginseng. J Biosci Bioeng 104:513–516. doi:10.1263/jbb.104.513

    Article  PubMed  CAS  Google Scholar 

  • Hu FX, Zhong JJ (2008) Jasmonic acid mediates gene transcription of ginsenoside biosynthesis in cell cultures of Panax notoginseng treated with chemically synthesized 2-hydroxyethyl jasmonate. Process Biochem 43:113–118. doi:10.1016/j.procbio.2007.10.010

    Article  CAS  Google Scholar 

  • Hwang B, Ko KM (1989) Induction and culture of hairy roots from ginseng (Panax ginseng C.A. Meyer) roots discs by Agrobacterium rhizogenes. Korean J Biotechnol Bioeng 4:288–292

    Google Scholar 

  • Kaminaga Y, Sahin FP, Mizukami H (2004) Molecular cloning and characterization of a glucosyltransferase catalyzing glucosylation of curcumin in cultured Catharanthus roseus cells. FEBS Lett 567:197–202. doi:10.1016/j.febslet.2004.04.056

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328. doi:10.1146/annurev.arplant.53.100301.135207

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Hahn EJ, Murthy HN, Paek KY (2004) Adventitious root growth and ginsenoside accumulation in Panax ginseng cultures as affected by methyl jasmonate. Biotechnol Lett 26:1619–1622. doi:10.1007/s10529-004-3183-2

    Article  PubMed  CAS  Google Scholar 

  • Kushiro T, Shibuya M, Ebizuka Y (1998) β-amyrin synthase-cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. Eur J Biochem 256:238–244. doi:10.1046/j.1432-1327.1998.2560238.x

    Article  PubMed  CAS  Google Scholar 

  • Lee MH, Jeong JH, Seo JW, Shin CG, Kim YS, In JG, Yang DC, Yi JS, Choi YE (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45:976–984. doi:10.1093/pcp/pch126

    Article  PubMed  CAS  Google Scholar 

  • Lu MB, Wong HL, Teng WL (2001) Effects of elicitation on the production of saponin in cell culture of Panax ginseng. Plant Cell Rep 20:647–677. doi:10.1007/s002990100349

    Article  CAS  Google Scholar 

  • Ma XQ, Liang XM, Xu Q, Zhang XZ, Xiao HB (2005) Identification of ginsenosides in roots of Panax ginseng by HPLC-APCI/MS. Phytochem Anal 16:181–187. doi:10.1002/pca.842

    Article  PubMed  CAS  Google Scholar 

  • Meesapyodsuk D, Balsevich J, Reed DW, Covello PS (2007) Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding β-amyrin synthase and a triterpene carboxylic acid glucosyltransferase. Plant Physiol 143:959–969. doi:10.1104/pp.106.088484

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Palazón J, Cusidó RM, Bonfill M, Mallol A, Moyano E, Morales C, Piñol MT (2003) Elicitation of different Panax ginseng transformed root phenotypes for an improved ginsenoside production. Plant Physiol Biochem 41:1019–1025. doi:10.1016/j.plaphy.2003.09.002

    Article  Google Scholar 

  • Pauwels L, Morreel K, Witte ED, Lammertyn F, Montagu MV, Boerjan W, Inźe D, Goossens A (2008) Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc Natl Acad Sci USA 105:1380–1385. doi:10.1073/pnas.0711203105

    Article  PubMed  CAS  Google Scholar 

  • Shibata S (2001) Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J Korean Med Sci 16:S28–S37

    PubMed  CAS  Google Scholar 

  • Shibuya M, Hoshino M, Katsube Y, Hayashi H, Kushiro T, Ebizuka Y (2006) Identification of β-amyrin and sophoradiol 24-hydroxylase by expressed sequence tag mining and functional expression assay. FEBS J 273:948–959. doi:10.1111/j.1742-4658.2006.05120.x

    Article  PubMed  CAS  Google Scholar 

  • Sticher O (1998) Getting to the root of ginseng. Chemtech 28:26–32

    CAS  Google Scholar 

  • Suzuki H, Achnine L, Xu R, Matsuda SPT, Dixon RA (2002) A genomic approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula. Plant J 32:1033-1048. doi:10.1046/j.1365-313X.2002.01497.x

    Article  PubMed  CAS  Google Scholar 

  • Tansakul P, Shibuya M, Kushiro T, Ebizuka Y (2006) Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng. FEBS Lett 580:5143–5149. doi:10.1016/j.febslet.2006.08.044

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Zhao ZJ, Xu Y, Qian X, Zhong JJ (2006) Efficient induction of ginsenoside biosynthesis and alteration of ginsenoside heterogeneity in cell cultures of Panax notoginseng by using chemically synthesized 2-hyroxylethyl jasmonate. Appl Microbiol Biotechnol 70:298–307. doi:10.1007/s00253-005-0089-4

    Article  PubMed  CAS  Google Scholar 

  • Yu KW, Gao W, Hahn EJ, Paek KY (2002) Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochem Eng J 11:211–215. doi:10.1016/S1369-703X(02)00029-3

    Article  CAS  Google Scholar 

  • Yue CJ, Zhong JJ (2005) Purification and characterization of UDPG:ginsenoside Rd glucosyltransferase from suspend cells of Panax notoginseng. Process Biochem 40:3742–3748. doi:10.1016/j.procbio.2005.05.001

    Article  CAS  Google Scholar 

  • Yue CJ, Zhou X, Zhong JJ (2008) Protopanaxadiol 6-hydroxylase and its role in regulating the ginsenoside heterogeneity in Panax notoginseng cells. Biotechnol Bioeng 100:933–940. doi:10.1002/bit.21829

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Min Jeong Lee, College of Agriculture, Life and Environment Sciences for quantitative analysis of ginsenoside contents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ok Tae Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, O.T., Bang, K.H., Kim, Y.C. et al. Upregulation of ginsenoside and gene expression related to triterpene biosynthesis in ginseng hairy root cultures elicited by methyl jasmonate. Plant Cell Tiss Organ Cult 98, 25–33 (2009). https://doi.org/10.1007/s11240-009-9535-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-009-9535-9

Keywords

Navigation