Skip to main content
Log in

Determination of content of metallothionein and low molecular mass stress peptides in transgenic tobacco plants

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Phytoremediation is a process that utilizes plants to remove, transfer, stabilize, or destroy pollutants in soil, sediment, and groundwater. Plants used for such purposes have several requirements. Genetic engineering these plants could be an effective tool used to acquire features needed for such purposes within a substantial amount of time. This paper aims to utilize electrochemical techniques to analyze transgenic tobacco and, thus, to reveal their heavy metals phytoremediation potential. Total thiol and metallothionein (MT) quantities were determined in the control and transgenic tobacco plants. The total content of thiols in transgenic plants varied within the range of 561 to 1,671 μg g−1. Furthermore, the determination of MT was done on transgenic tobacco plants. The level of human MT in transgenic tobacco plants varied between 25 and 95 μg g−1. However, a plant cell protects itself by synthesizing low molecular mass thiols such as reduced glutathione and phytochelatins to protect itself against heavy metals toxicity. The most important thiols, cysteine (Cys), glutathione (GSH), oxidised glutathione (GSSG) and phytochelatin 2 (PC2), were determined in the non-transgenic and transgenic tobacco plants by high performance liquid chromatography with electrochemical detection. Tobacco plants synthesizing the highest amount of metallothionein have the highest basal level of phytochelatin 2 as well as reduced glutathione and free cysteine. It clearly follows from the results obtained that the biosynthesis of particular thiols is mutually linked, which contributes to a better protection of a transgenic plant against heavy metals effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MT:

Metallothionein

DPV:

Differential pulse voltammetry

AdTS:

Adsorptive transfer stripping

PC:

Phytochelatins

Cys :

Cysteine

GSH:

Reduced glutathione

GSSG:

Oxidised glutathione

References

  • Athar R, Ahmad M (2002) Heavy metal toxicity: effect on plant growth and metal uptake by wheat, and on free living azotobacter. Water Air Soil Pollut 138(1–4):165–180

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11):1707–1719

    Article  PubMed  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  PubMed  CAS  Google Scholar 

  • Daniel P, Gyori Z (2000) Effect of cadmium on the development of maize plants. Novenytermeles 49(4):405–412

    CAS  Google Scholar 

  • Francova K, Macek T, Demnerova K, Mackova M (2001) Transgenic plants–a potential tool for decontamination of environmental pollutants. Chem Listy 95(10):630–637

    CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins–the principal heavy-metal complexing peptides of higher-plants. Science 230(4726):674–676

    Article  PubMed  CAS  Google Scholar 

  • Henry RB, Liu J, Choudhuri S, Klaassen CD (1994) Species variation in hepatic metallothionein. Toxicol Lett 74(1):23–33

    Article  PubMed  CAS  Google Scholar 

  • Kizek R, Vacek J, Trnkova L, Klejdus B, Havel L (2004) Application of catalytic reactions on a mercury electrode for electrochemical detection of metallothioneins. Chem Listy 98(4):166–173

    CAS  Google Scholar 

  • Kotrba P, Macek T, Ruml T (1999) Heavy metal-binding peptides and proteins in plants. A review Collect Czech Chem Commun 64(7):1057–1086

    Article  CAS  Google Scholar 

  • Leopold I, Gunther D, Schmidt J, Neumann D (1999) Phytochelatins and heavy metal tolerance. Phytochemistry 50(8):1323–1328

    Article  CAS  Google Scholar 

  • Macek T, Mackova M, Pavlikova D, Szakova J, Truksa M, Cundy S, Kotrba P, Yancey N, Scouten WH (2002) Accumulation of cadmium by transgenic tobacco. Acta Biotechnol 22(1–2):101–106

    Article  CAS  Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  PubMed  CAS  Google Scholar 

  • Mikelova R, Baloun J, Petrlova J, Adam V, Havel L, Petrek H, Horna A, Kizek R (2007) Electrochemical determination of Ag-ions in environment waters and their action on plant embryos. Bioelectrochemistry 70(2):508–518

    Article  PubMed  CAS  Google Scholar 

  • Palmiter RD (1994) Regulation of metallothionein genes by heavy-metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor, Mtf-1. Proc Natl Acad Sci USA 91(4):1219–1223

    Article  PubMed  CAS  Google Scholar 

  • Pavlikova D, Macek T, Mackova M, Sura M, Szakova J, Tlustos P (2004a) The evaluation of cadmium, zinc and nickel accumulation ability of transgenic tobacco bearing different transgenes. Plant Soil Environ 50(12):513–517

    CAS  Google Scholar 

  • Pavlikova D, Macek T, Mackova M, Szakova J, Balik J (2004b) Cadmium tolerance and accumulation in transgenic tobacco plants with a yeast metallothionein combined with a polyhistidine tail. Int Biodeterior Biodegrad 54(2–3):233–237

    Article  CAS  Google Scholar 

  • Petrlova J, Mikelova R, Stejskal K, Kleckerova A, Zitka O, Petrek J, Havel L, Zehnalek J, Adam V, Trnkova L, Kizek R (2006a) Simultaneous determination of eight biologically active thiol compounds using gradient elution-liquid chromatography with coul-array detection. J Sep Sci 29(8):1166–1173

    Article  PubMed  CAS  Google Scholar 

  • Petrlova J, Potesil D, Mikelova R, Blastik O, Adam V, Trnkova L, Jelen F, Prusa R, Kukacka J, Kizek R (2006b) Attomole voltammetric determination of metallothionein. Electrochim Acta 51(24):5112–5119

    Article  CAS  Google Scholar 

  • Potesil D, Petrlova J, Adam V, Vacek J, Klejdus B, Zehnalek J, Trnkova L, Havel L, Kizek R (2005) Simultaneous femtomole determination of cysteine, reduced and oxidized glutathione, and phytochelatin in maize (Zea mays L.) kernels using high-performance liquid chromatography with electrochemical detection. J Chromatogr A 1084(1–2):134–144

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar N, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation–a novel strategy for the removal of toxic metals from the environment using plants. Bio-Technology 13(5):468–474

    PubMed  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Molec Biol 49:643–668

    Article  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31(5):739–753

    Article  PubMed  CAS  Google Scholar 

  • Stroinski A (1999) Some physiological and biochemical aspects of plant resistance to cadmium effect. I. Antioxidative system. Acta Physiol Plant 21(2):175–188

    Article  CAS  Google Scholar 

  • Supalkova V, Huska D, Diopan V, Hanustiak P, Zitka O, Stejskal K, Baloun J, Pikula J, Havel L, Zehnalek J, Adam V, Trnkova L, Beklova M, Kizek R (2007a) Electroanalysis of plant thiols. Sensors 7(6):932–959

    Article  CAS  Google Scholar 

  • Supalkova V, Petrek J, Baloun J, Adam V, Bartusek K, Trnkova L, Beklova M, Diopan V, Havel L, Kizek R (2007b) Multi-instrumental investigation of affecting of early somatic embryos of spruce by cadmium(II) and lead(II) ions. Sensors 7(5):743–759

    Article  CAS  Google Scholar 

  • Trnkova L, Kizek R, Vacek J (2002) Catalytic signal of rabbit liver metallothionein on a mercury electrode: a combination of derivative chronopotentiometry with adsorptive transfer stripping. Bioelectrochemistry 56(1–2):57–61

    Article  PubMed  CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy-metals. Biotechnol Prog 11(3):235–250

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann T, Zeizinger M, Burda JV (2005) Cisplatin interaction with cysteine and methionine, a theoretical DFT study. J Inorg Biochem 99(11):2184–2196

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks to Dr. Grace J. Chavis for language corrections and discussions. The financial support from grant No. 1M06030 is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rene Kizek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diopan, V., Shestivska, V., Adam, V. et al. Determination of content of metallothionein and low molecular mass stress peptides in transgenic tobacco plants. Plant Cell Tiss Organ Cult 94, 291–298 (2008). https://doi.org/10.1007/s11240-008-9356-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-008-9356-2

Keywords

Navigation