Skip to main content
Log in

Limitations of conventional anticoagulant therapy and the promises of non-heparin based conformational activators of antithrombin

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

An elevated prothrombotic state is a major risk factor for venous thromboembolism, atrial fibrillation and cardiac strokes. The regulation of various coagulation cascade proteases plays an important role in determining a prothrombotic state. Clinically used anticoagulants are inhibitor of enzymes that are involved in the coagulation pathway, primarily thrombin and factor Xa. The conformational activation of antithrombin by heparin is a critical step in the inhibition of factor Xa by antithrombin. Despite heparin being the most potent physiological activator which enhances the otherwise very lethargic antithrombin inhibition of factor Xa by approximately 1,000-fold, the conventional heparin therapy poses serious complications because of heparin’s polyanionic nature and its cross-reactivity. A number of attempts have been carried out in designing alternative non-heparin based conformational activators of antithrombin for factor Xa inhibition. Studies have demonstrated appreciable activation of antithrombin by small organic molecules, but not much is known about the specificity and effects of these molecules on structure and stability. It is assumed that these activators of antithrombin perform their function by binding to heparin binding site. A recently identified cavity which links the heparin binding site to the strand 2A for antithrombin activation also seems to be an ideal target apart the heparin binding site of antithrombin. There are opportunities in discovering more activators from naturally available organic scaffolds and also for modifying such scaffolds for designing better conformational activators with minimum associated complications. This review summarizes the current literature on the mainstay anticoagulants and non-heparin based antithrombin conformation modulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ATIII:

Antithrombin

Serpin:

Serine protease inhibitor

RCL:

Reactive center loop

HIT:

Heparin induced thrombocytopenia

LMWH:

Low molecular weight heparin

INR:

International normalized ratio

UFH:

Unfractionated heparin

QTS:

Quercetin 3,7,3′,4′-tetrasulfate

ATS:

Quercetin 3-acetyl-7,3′,4′-trisulfate

aPTT:

Activated partial thromboplastin time

PT:

Prothrombin time

TT:

Thrombin time

PAAs:

Polyacrylic acids

HINT:

Hydropathic interaction technique

ECS:

Epicatechin sulfate

DHP:

Dehydrogenation polymer

CDSO3:

Sulfated dehydropolymer of caffeic acid

References

  1. Corral J, Vincete V, Carrell RW (2005) Thrombosis as a conformational disease. Haematologica 90(2):238–246

    PubMed  Google Scholar 

  2. Rand MD, Lock JB, Veer CV, Gaffney DP, Mann KG (1996) Blood clotting in minimally altered whole blood. Blood 88(9):3432–3445

    PubMed  CAS  Google Scholar 

  3. Furie B, Furie BC (2008) Mechanisms of thrombus formation. N Engl J Med 28(9):938–949

    Article  Google Scholar 

  4. Rosendaal FR (2005) Venous thrombosis: the role of genes, environment, and behavior hematology. Am Soc Hematol Educ Progam 1:1–12

    Article  Google Scholar 

  5. Rebecca Jensen (2002) Clinical presentation of arterial thrombosis vs. venous thrombosis. Clin Hemost Rev 16(8):1–6

    Google Scholar 

  6. Lippi G, Franchini M, Targher G (2011) Arterial thrombus formation in cardiovascular disease. Nat Rev Cardiol 8(9):502–512

    Article  PubMed  Google Scholar 

  7. Reistma PH, Rosendaal R (2007) Past and future of genetic research in thrombosis. J Thromb Haemost 1:264–269

    Google Scholar 

  8. Husmann M, Barton M (2007) Therapeutical potential of direct thrombin inhibitors for atherosclerotic vascular disease. Expert Opin Investig Drugs 16(5):563–567

    Article  PubMed  CAS  Google Scholar 

  9. Agnelli G, Sonaglia F (1999) Clinical status of direct thrombin inhibitors. Crit Rev Oncol Hematol 31(2):97–117

    Article  PubMed  CAS  Google Scholar 

  10. Fareed J, Hoppensteadt DA, Bick RL (2000) An update on heparins at the beginning of the new millennium. Semin Thromb Hemost 26(Suppl 1):5–21

    Article  PubMed  CAS  Google Scholar 

  11. Hoffman M, Monroe DM (2007) Coagulation 2006: a modern view of hemostasis. Hematol Oncol Clin North Am 21(1):1–11

    Article  PubMed  Google Scholar 

  12. Mann KG, Brummel K, Butenas S (2003) What is all that thrombin for? J Thromb Haemost 1(7):1504–1514

    Article  PubMed  CAS  Google Scholar 

  13. Liu L, Ma H, Yang N, Tang Y, Guo J, Tao W, Duan J (2010) A series of natural flavonoids as thrombin inhibitors: structure-activity relationships. Thromb Res 126(5):e365–e378

    Article  PubMed  CAS  Google Scholar 

  14. Turpie AG (2007) Oral, direct factor Xa inhibitors in development for the prevention and treatment of thromboembolic diseases. Arterioscler Thromb Vasc Biol 27(6):1238–1247

    Article  PubMed  CAS  Google Scholar 

  15. Desai UR (2004) New antithrombin-based anticoagulants. Med Res Rev 24(2):151–181

    Article  PubMed  CAS  Google Scholar 

  16. Brambel CE (1955) The role of flavonoids in coumarin anticoagulant therapy. Ann NY Acad Sci 61(3):678–681

    Article  PubMed  CAS  Google Scholar 

  17. Hirsh J (1991) Oral anticoagulant drugs. N Engl J Med 324(26):1865–1875

    Article  PubMed  CAS  Google Scholar 

  18. Chan YC, Valenti D, Mansfield AO, Stansby G (2000) Warfarin induced skin necrosis. Br J Surg 87(3):266–272

    Article  PubMed  CAS  Google Scholar 

  19. Eikelboom JW, Weitz JI (2010) New anticoagulants. Circulation 121(13):1523–1532

    Article  PubMed  Google Scholar 

  20. Gray E, Mulloy B, Barrowcliffe TW (2008) Heparin and low-molecular-weight heparin. Thromb Haemost 99(5):807–818

    PubMed  CAS  Google Scholar 

  21. Rabenstein DL (2002) Heparin and heparan sulfate: structure and function. Nat Prod Rep 19(3):312–331

    Article  PubMed  CAS  Google Scholar 

  22. Lefkou E, Khamashta M, Hampson G, Hunt BJ (2010) Review: low-molecular-weight heparin induced osteoporosis and osteoporotic fractures: a myth or an existing entity? Lupus 19(1):3–12

    Article  PubMed  CAS  Google Scholar 

  23. Januzzi JL Jr, Jang IK (2000) Fundamental concepts in the pathobiology of heparin-induced thrombocytopenia. J Thromb Thrombolysis 10(Suppl 1):7–11

    Article  Google Scholar 

  24. Liu H, Zhang Z, Linhardt RJ (2009) Lessons learned from the contamination of heparin. Nat Prod Rep 26(3):313–321

    Article  PubMed  CAS  Google Scholar 

  25. Correia-da-Silva M, Sousa E, Duarte B, Marques F, Carvalho F, Cunha-Ribeiro LM, Pinto MM (2011) Polysulfated xanthones: multipathway development of a new generation of dual anticoagulant/antiplatelet agents. J Med Chem 54(15):5373–5384

    Article  PubMed  CAS  Google Scholar 

  26. Raghuraman A, Liang A, Krishnasamy C, Lauck T, Gunnarsson GT, Desai UR (2009) On designing non-saccharide, allosteric activators of antithrombin. Eur J Med Chem 44(6):2626–2631

    Article  PubMed  CAS  Google Scholar 

  27. Henry BL, Connell J, Liang A, Krishnasamy C, Desai UR (2009) Interaction of antithrombin with sulfated, low molecular weight lignins: opportunities for potent, selective modulation of antithrombin function. J Biol Chem 284(31):20897–20908

    Article  PubMed  CAS  Google Scholar 

  28. Janin S, Meneveau N, Mahemuti A, Descotes-Genon V, Dutheil J, Chopard R, Seronde MF, Schiele F, Bernard Y, Bassand JP (2009) Safety and efficacy of fondaparinux as an adjunctive treatment to thrombolysis in patients with high and intermediate risk pulmonary embolism. J Thromb Thrombolysis 28(3):320–324

    Article  PubMed  CAS  Google Scholar 

  29. Weitz JI, Hirsh J, Samama MM, American College of Chest Physicians (2008) New antithrombotic drugs: American College of Chest Physicians evidence-based clinical practice guidelines (8th ed.). Chest 133(Suppl 6):234S–256S

    Article  PubMed  CAS  Google Scholar 

  30. Gandhi NS, Mancera RL (2008) The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 72(6):455–482

    Article  PubMed  CAS  Google Scholar 

  31. Capila I, Linhardt RJ (2002) Heparin-protein interactions. Angew Chem Int Ed Engl 41(3):391–412

    Article  PubMed  Google Scholar 

  32. Marciniak E, Gockerman JP (1977) Heparin-induced decrease in circulating antithrombin III. Lancet 2(8038):581–584

    Article  PubMed  CAS  Google Scholar 

  33. Knot EA, de Jong E, ten Cate JW, Gie LK, van Royen EA (1987) Antithrombin III: biodistribution in healthy volunteers. Thromb Haemost 58(4):1008–1011

    PubMed  CAS  Google Scholar 

  34. Carrell RW, Pemberton PA, Boswell DR (1987) The serpins: evolution and adaptation in a family of protease inhibitors. Cold Spring Harb Symp Quant Biol 52:527–535

    Article  PubMed  CAS  Google Scholar 

  35. Olson ST, Bjork I (1994) Regulation of thrombin activity by antithrombin and heparin. Semin Thromb Hemost 20(4):373–409

    Article  PubMed  CAS  Google Scholar 

  36. Olson ST, Bjork I, Sheffer R, Craig PA, Shore JD, Choay J (1992) Role of the antithrombin-binding pentasaccharide in heparin acceleration of antithrombin-proteinase reactions. Resolution of the antithrombin conformational change contribution to heparin rate enhancement. J Biol Chem 267(18):12528–12538

    PubMed  CAS  Google Scholar 

  37. Wright HT, Scarsdale JN (1995) Structural basis for serpin inhibitor activity. Proteins 22(3):210–225

    Article  PubMed  CAS  Google Scholar 

  38. Lindahl U, Backkstrom G, Thunberg L, Leder IG (1980) Evidence for a 3-O-sulfated d glucosamine residue in the antithrombin-binding sequence of heparin. Proc Natl Acad Sci USA 77(11):6551–6555

    Article  PubMed  CAS  Google Scholar 

  39. Carrell RW, Stein PE, Fermi G, Wardell MR (1994) Biological implications of a 3A structure of dimeric antithrombin. Structure 2(4):257–270

    Article  PubMed  CAS  Google Scholar 

  40. Olson ST, Shore JD (1981) Binding of high affinity heparin to antithrombin III. Characterization of the protein fluorescence enhancement. J Biol Chem 256(21):11065–11072

    PubMed  CAS  Google Scholar 

  41. Gettins PG (2002) Serpin structure, mechanism, and function. Chem Rev 102(12):4751–4804

    Article  PubMed  CAS  Google Scholar 

  42. Belzar KJ, Zhou A, Carrell RW, Gettins PG, Huntington JA (2002) Helix D elongation and allosteric activation of antithrombin. J Biol Chem 277(10):8551–8558

    Article  PubMed  CAS  Google Scholar 

  43. Meagher JL, Olson ST, Gettins PG (2000) Critical role of the linker region between helix D and strand 2A in heparin activation of antithrombin. J Biol Chem 275(4):2698–2704

    Article  PubMed  CAS  Google Scholar 

  44. Izaguirre G, Zhang W, Swanson R, Bedsted T, Olson ST (2003) Localization of an antithrombin exosite that promotes rapid inhibition of factors Xa and IXa dependent on heparin activation of the serpin. J Biol Chem 278(51):51433–51440

    Article  PubMed  CAS  Google Scholar 

  45. Carrell RW, Evans DLI, Stein H (1991) Mobile reactive centre of serpins and the control of thrombosis. Nature 353(6344):576–579

    Article  PubMed  CAS  Google Scholar 

  46. Carrell RW, Perry DJ (1996) The unhinged antithrombins. Br J Haematol 93(2):253–257

    Article  PubMed  CAS  Google Scholar 

  47. Jin L, Abrahams J-P, Skinner R, Petitou M, Pike RN, Carrell RW (1997) The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci USA 94(26):14683–14688

    Article  PubMed  CAS  Google Scholar 

  48. van Boeckel CAA, Grootenhuis PDJ, Visser A (1994) A mechanism for heparin induced potentiation of antithrombin III. Nat Struct Biol 1(7):423–425

    Article  PubMed  Google Scholar 

  49. Jairajpuri MA, Lu A, Desai U, Olson ST, Bjork I, Bock SC (2003) Antithrombin III phenylalanines 122 and 121 contribute to its high affinity for heparin and its conformational activation. J Biol Chem 278(18):15941–15950

    Article  PubMed  CAS  Google Scholar 

  50. Desai UR, Petitou M, Bjork I, Olson ST (1998) Mechanism of heparin activation of antithrombin. Role of individual residues of the pentasaccharide activating sequence in the recognition of native and activated states of antithrombin. J Biol Chem 273(13):7478–7487

    Article  PubMed  CAS  Google Scholar 

  51. Petitou M, van Boeckel CA (2004) A synthetic antithrombin III binding pentasaccharide is now a drug! What comes next? Angew Chem Int Ed Engl 43(24):3118–3133

    Article  PubMed  CAS  Google Scholar 

  52. Correia-da-Silva M, Sousa E, Duarte B, Marques F, Carvalho F, Cunha-Ribeiro LM, Pinto MM (2011) Flavonoids with an oligopolysulfated moiety: a new class of anticoagulant agents. J Med Chem 54(1):95–106

    Article  PubMed  CAS  Google Scholar 

  53. Gunnarsson GT, Desai UR (2002) Interaction of designed sulfated flavanoids with antithrombin: lessons on the design of organic activators. J Med Chem 45(20):4460–4470

    Article  PubMed  CAS  Google Scholar 

  54. Gunnarsson GT, Desai UR (2003) Exploring new non-sugar sulfated molecules as activators of antithrombin. Bioorg Med Chem Lett 13(4):679–683

    Article  PubMed  CAS  Google Scholar 

  55. Guglielmone HA, Agnese AM, Nunez SC, Cabrera JL (2002) Anticoagulant effect and action mechanism of sulphated flavonoids from Flaveria bidentis. Thromb Res 105(2):183–188

    Article  PubMed  CAS  Google Scholar 

  56. Gunnarsson GT, Riaz M, Adams J, Desai UR (2005) Synthesis of per-sulfated flavonoids using 2,2,2-trichloroethyl protecting group and their factor Xa inhibition potential. Bioorg Med Chem 13(5):1783–1789

    Article  PubMed  CAS  Google Scholar 

  57. Rimbach G, Weinberg PD, de Pascual-Teresa S, Alonso MG, Ewins BA, Turner R, Minihane AM, Botting N, Fairley B, Matsugo S, Uchida Y, Cassidy A (2004) Sulfation of genistein alters its antioxidant properties and its effect on platelet aggregation and monocyte and endothelial function. Biochim Biophys Acta 1670(3):229–237

    Article  PubMed  CAS  Google Scholar 

  58. Liang A, Thakkar JN, Desai UR (2010) Study of physico-chemical properties of novel highly sulfated, aromatic, mimetics of heparin and heparan sulfate. J Pharm Sci 99(3):1207–1216

    Article  PubMed  CAS  Google Scholar 

  59. Verghese J, Liang A, Sidhu PPS, Hindle M, Zhou Q, Desai UR (2009) First steps toward synthetic, allosteric, direct inhibitors of thrombin and factor Xa. Bioorg Med Chem Lett 19(15):4126–4129

    Article  PubMed  CAS  Google Scholar 

  60. Monien BH, Henry BL, Raghuraman A, Hindle M, Desai UR (2006) Novel chemo-enzymatic oligomers of cinnamic acids as direct and indirect inhibitors of coagulation proteinases. Bioorg Med Chem 14(23):7988–7998

    Article  PubMed  CAS  Google Scholar 

  61. Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63(7):1035–1042

    Article  PubMed  CAS  Google Scholar 

  62. Janssen K, Mensink RP, Cox FJ, Harryvan JL, Hovenier R, Hollman PC, Katan MB (1998) Effects of the flavonoids quercetin and apigenin on hemostasis in healthy volunteers: results from an in vitro and a dietary supplement study. Am J Clin Nutr 67(2):255–262

    PubMed  CAS  Google Scholar 

  63. Lale A, Herbert JM, Augereau JM, Billon M, Leconte M, Gleye J (1996) Ability of different flavonoids to inhibit the procoagulant activity of adherent human monocytes. J Nat Prod 59(3):273–276

    Article  PubMed  CAS  Google Scholar 

  64. Wu QL, Wang SP, Du LJ, Zhang SM, Yang JS, Xiao PG (1998) Chromone glycosides and flavonoids from Hypericum japonicum. Phytochemistry 49(5):1417–1420

    Article  CAS  Google Scholar 

  65. Liu W, Song ZJ, Liang NC, She J, Mo LE (1999) Inhibitory effects of sodium Quercetin monosulfate on pig platelet aggregation induced by thrombin. Zhongguo Yao Li Xue Bao 20(7):623–626

    PubMed  Google Scholar 

  66. Liu W, Liang NC (2000) Inhibitory effect of disodium quercetin-7,4′-disulfate on aggregation of pig platelets induced by thrombin and its mechanism. Acta Pharmacol Sin 21(8):737–741

    PubMed  CAS  Google Scholar 

  67. Guglielmone HA, Agnese AM, Nunez Montoya SC, Cabrera JL (2005) Inhibitory effects of sulphated flavonoids isolated from Flaveria bidentis on platelet aggregation. Thromb Res 115(6):495–502

    Article  PubMed  CAS  Google Scholar 

  68. Gunnarsson GT, Desai UR (2004) Hydropathic interaction analyses of small organic activators binding to antithrombin. Bioorg Med Chem 12(3):633–640

    Article  PubMed  CAS  Google Scholar 

  69. Gunnarsson GT, Desai UR (2002) Designing small, nonsugar activators of antithrombin using hydropathic interaction analyses. J Med Chem 45(6):1233–1243

    Article  PubMed  CAS  Google Scholar 

  70. Kuntic V, Filipovic I, Vujic Z (2011) Effects of rutin and hesperidin and their Al(III) and Cu(II) complexes on in vitro plasma coagulation assays. Molecules 16(2):1378–1388

    Article  PubMed  CAS  Google Scholar 

  71. Monien BH, Desai UR (2005) Antithrombin activation by nonsulfated, non-polysaccharide organic polymer. J Med Chem 48(4):1269–1273

    Article  PubMed  CAS  Google Scholar 

  72. Monien BH, Cheang KI, Desai UR (2005) Mechanism of poly(acrylic acid) acceleration of antithrombin inhibition of thrombin: implications for the design of novel heparin mimics. J Med Chem 48(16):5360–5368

    Article  PubMed  CAS  Google Scholar 

  73. Olson ST, Bjork I, Bock SC (2002) Identification of critical molecular interactions mediating heparin activation of antithrombin: implications for the design of improved heparin anticoagulants. Trends Cardiovasc Med 12(5):198–205

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research in the lab is supported by grants from Department of Biotechnology, University Grant Commission and Indian Council of Medical Research, Government of India. QR is supported by CSIR Senior Research Fellowship. PS is supported by a grant from Rajiv Gandhi National Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Aman Jairajpuri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rashid, Q., Singh, P., Abid, M. et al. Limitations of conventional anticoagulant therapy and the promises of non-heparin based conformational activators of antithrombin. J Thromb Thrombolysis 34, 251–259 (2012). https://doi.org/10.1007/s11239-012-0712-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-012-0712-z

Keywords

Navigation