Skip to main content

Advertisement

Log in

Function, selection, and construction in the brain

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

A common misunderstanding of the selected effects theory of function is that natural selection operating over an evolutionary time scale is the only function-bestowing process in the natural world. This construal of the selected effects theory conflicts with the existence and ubiquity of neurobiological functions that are evolutionary novel, such as structures underlying reading ability. This conflict has suggested to some that, while the selected effects theory may be relevant to some areas of evolutionary biology, its relevance to neuroscience is marginal. This line of reasoning, however, neglects the fact that synapses, entire neurons, and potentially groups of neurons can undergo a type of selection analogous to natural selection operating over an evolutionary time scale. In the following, I argue that neural selection should be construed, by the selected effect theorist, as a distinct type of function-bestowing process in addition to natural selection. After explicating a generalized selected effects theory of function and distinguishing it from similar attempts to extend the selected effects theory, I do four things. First, I show how it allows one to identify neural selection as a distinct function-bestowing process, in contrast to other forms of neural structure formation such as neural construction. Second, I defend the view from one major criticism, and in so doing I clarify the content of the view. Third, I examine drug addiction to show the potential relevance of neural selection to neuroscientific and psychological research. Finally, I endorse a modest pluralism of function concepts within biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen C., &  Bekoff M. (1995) Biological function, adaptation, and natural design. Philosophy of Science 62: 609–622

    Google Scholar 

  • Antonini A., Stryker M. P. (1993a) Rapid remodeling of axonal arbors in the visual cortex. Science 260: 1819–1821

    Google Scholar 

  • Antonini A., Stryker M. P. (1993b) Development of individual geniculocortical arbors in cat striate cortex and effects of binocular impulse blockade. The Journal of Neuroscience 13: 3549–3573

    Google Scholar 

  • Ayala F. (1970) Teleological explanations in evolutionary biology. Philosophy of Science 37: 1–15

    Google Scholar 

  • Barlow H. B. (1988) Neuroscience: A new era?. Nature 331: 571

    Google Scholar 

  • Bechtel W., Richardson R. C. (1993) Discovering complexity: Decomposition and localization as strategies in scientific research. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Black J. E., Greenough W. T. (1986) Induction of pattern in neural structure by experience: Implications for cognitive development. In: Lamb M. E., Brown A. L., Rogoff B. (Eds.) Advances in developmental psychology Vol. 4. Lawrence Erlbaum, Hillsdale, NJ, pp 1–50

    Google Scholar 

  • Black J. E., Greenough W. T. (1997) How to build a brain: Multiple memory systems have evolved and only some of them are constructivist. Behavioral and Brain Sciences 20(4): 558–559

    Google Scholar 

  • Boorse C. (1976) Wright on functions. Philosophical review 85: 70–86

    Google Scholar 

  • Bothwell M. (1995) Functional interactions of neurotrophins and neurotrophin receptors. Annual Review of Neuroscience 18: 223–253

    Google Scholar 

  • Bouchard F. (2008) Causal processes, fitness, and the differential persistence of lineages. Philosophy of Science 75: 560–570

    Google Scholar 

  • Brandon R. N. (1990) Adaptation and environment. Princeton University Press, Princeton

    Google Scholar 

  • Brandon, R. N. (forthcoming). A general case for functional pluralism. In P. Huneman (Ed.), Functions: Selection and mechanisms (pp. 199–220). Boston: Synthese Library.

  • Buller D. J. (2005) Adapting minds: Evolutionary psychology and the persistent quest for human nature. MIT Press, Cambridge, MA

    Google Scholar 

  • Buller D. J., Hardcastle V. G. (2000) Evolutionary psychology, meet developmental neurobiology: Against promiscuous modularity. Brain and Mind 1: 307–325

    Google Scholar 

  • Buonomano D. V., Merzenich M. M. (1998) Cortical plasticity: From synapses to maps. Annual Review of Neuroscience 21: 149–186

    Google Scholar 

  • Burnet F. M. (1959) The clonal selection theory of acquired immunity. Cambridge University Press, Cambridge

    Google Scholar 

  • Changeux J. P. (1985) Neuronal man. Pantheon Books, New York

    Google Scholar 

  • Changeux J. P. (1997) Variation and selection in neural function. Trends in Neurosciences 20: 291–292

    Google Scholar 

  • Changeux J.-P., Danchin A. (1976) Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks. Nature 264: 705–712

    Google Scholar 

  • Changeux J.-P., Courrège P., Danchin A. (1973) A theory of the epigenesis of neural networks by selective stabilization of synapses. Proceedings of the National Academy of Sciences of the United States of America 70: 2974–2978

    Google Scholar 

  • Clarke P. G. H., Cowan W. M. (1975) Ectopic neurons and aberrant development during neural development. Proceedings of the National Academy of Sciences of the United States of America 72: 4455–4458

    Google Scholar 

  • Clarke P. G. H., Cowan W. M. (1976) The development of the isthmo-optic tract in the chick, with special reference to the occurrence and correction of developmental errors in the location and ocnnections of isthmo-optic neurons. Journal of Comparative Neurology 167: 143–164

    Google Scholar 

  • Cohen S., Levi-Montalcini R. (1956) A nerve growth stimulating factor, isolated from snake venom. Proceedings of the National Academy of Sciences of the United States of America 42: 571–574

    Google Scholar 

  • Cowan W. M. (1973) Neuronal death as a regulative mechanism in the control of cell number in the nervous system. In: Rockstein M. (Ed.) Development and aging in the nervous system. Academic Press, Newyork, pp 19–41

    Google Scholar 

  • Cowan W. M. (1978) Aspects of neural development. In: Porter R. (Ed.) Neurophysiology III. University Park Press, Baltimore, pp 149–191

    Google Scholar 

  • Craver C. (2001) Role functions, mechanisms, and hierarchy. Philosophy of Science 68: 53–74

    Google Scholar 

  • Craver, C. (forthcoming). Functions and mechanisms in contemporary neuroscience. In P. Huneman (Ed.) Functions: Selection and mechanisms (pp. 199–220). Boston: Synthese Library.

  • Crick F. (1989) Neural edelmanism. Trends in Neurosciences 12: 240–248

    Google Scholar 

  • Cummins R. (1975) Functional analysis. Journal of Philosophy 72: 741–765

    Google Scholar 

  • Cziko G. (1995) Without miracles: Universal selection theory and the second darwinian revolution. MIT Press, Cambridge

    Google Scholar 

  • Darden L., Cain J. A. (1989) Selection type theories. Philosophy of Science 56: 106–129

    Google Scholar 

  • Davies A. M., Bandtlow C., Heumann R., Korsching S., Hermann R., Thoenen H. (1987) Timing and site of nerve growth factor synthesis in developing skin in relation to innervation and expression of the receptor. Nature 326: 353–358

    Google Scholar 

  • Deppmann D. et al (2008) A model for neuronal competition during development. Science 320: 369–373

    Google Scholar 

  • Detwiler S. R. (1936) Neuroembryology: An experimental study. Macmillan, New York

    Google Scholar 

  • Ebendal T., Olson L., Seiger A., Hedlund K.-O. (1980) Nerve growth factor in the rat iris. Nature 286: 25–28

    Google Scholar 

  • Edelman G. (1967) Spike trains as carriers of information. In: Quarton G. C., Melnechuk T., Schmitt F. O. (Eds.) The neurosciences: A study program. Rockefeller University Press, Newyork, pp 200–205

    Google Scholar 

  • Edelman G. (1975) Molecular recognition in the immune and nervous systems. In: Worden F. G., Swazey J. P., Adelman G. (Eds.) The neurosciences: Paths of discovery. MIT Press, Cambridge, pp 65–74

    Google Scholar 

  • Edelman G. M. (1978) Group selection and phasic reentrant signaling: A theory of higher brain function. In: Edelman G. M., Mountcastle V. B. (Eds.) The mindful brain: Cortical organization and the group-selective theory of higher brain function. MIT Press, Cambridge Mass, pp 51–100

    Google Scholar 

  • Edelman G. M. (1987) Neural darwinism: The theory of neuronal group selection. Basic Books, Newyork

    Google Scholar 

  • Edelman G. M., Tononi G. (2001) Consciousness: How matter becomes imagination. Penguin, London

    Google Scholar 

  • Elliott T., Shadbolt N. R. (1997) Neurotrophic factors, neural selectionism, and neuronal proliferation. Behavioral and Brain Sciences 20: 561–562

    Google Scholar 

  • Elliott T., Shadbolt N. R. (1998) Competition for neurotrophic factors: Ocular dominance columns. The Journal of Neuroscience 18: 5850–5858

    Google Scholar 

  • Elliott T., Shadbolt N. R. (2002) Multiplicative synaptic normalization and a nonlinear Hebb rule underlie a neurotrophic model of competitive synaptic plasticity. Neural Computation 14: 1311–1322

    Google Scholar 

  • Garson J. (2008) Function and teleology. In: Sarkar S., Plutynski A. (Eds.) A companion to the philosophy of biology. Blackwell, Malden, MA, pp 525–549

    Google Scholar 

  • Garson J. (2010) Schizophrenia and the dysfunctional brain. Journal of Cognitive Science 11: 215–246

    Google Scholar 

  • Garson J. (2011) Selected effects functions and causal role functions in the brain: The case for an etiological approach to neuroscience. Biology & Philosophy 26: 547–565

    Google Scholar 

  • Gazzaniga M. S. (1992) Nature’s mind: The biological roots of thinking, emotions, sexuality, language, and intelligence. Basic Books, New York

    Google Scholar 

  • Glennan S. (2002) Contextual unanimity and the units of selection problem. Philosophy of Science 69: 118–137

    Google Scholar 

  • Glennan S. (2005) Modeling mechanisms. Studies in the History and Philosophy of Biological and Biomedical Sciences 36(2): 443–464

    Google Scholar 

  • Godfrey-Smith P. (1992) Indication and adaptation. Synthese 92: 283–312

    Google Scholar 

  • Godfrey-Smith P. (1994) A modern history theory of functions. Nous 28: 344–362

    Google Scholar 

  • Godfrey-Smith P. (2007) Conditions for evolution by natural selection. Journal of Philosophy 104: 489–516

    Google Scholar 

  • Goldstein R. Z., Volkow N. D. (2011) Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nature Reviews Neuroscience 12: 652–669

    Google Scholar 

  • Griffiths P. E. (1993) Functional analysis and proper function. British Journal for the Philosophy of Science 44: 409–422

    Google Scholar 

  • Griffiths P. E. (2006) Function, homology, and character individuation. Philosophy of Science 73: 1–25

    Google Scholar 

  • Haier R. J., Karama S., Leyba L., Jung R. E. (2009) MRI assessment of cortical thickness and functional activity changes in adolescent girls following three months of practice on a visual-spatial task. BMC Research Notes 2: 174–180

    Google Scholar 

  • Hamburger V. (1958) Regression versus peripheral control of differentiation in motor hypoplasia. American Journal of Anatomy 102: 365–410

    Google Scholar 

  • Hamburger V., Levi-Montalcini R. (1949) Proliferation, differentiation, and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. Journal of Experimental Zoology 111: 457–507

    Google Scholar 

  • Harris A. E., Ermentrout G. B., Small S. L. (1997) A model of ocular dominance column development by competition for trophic factor. Proceedings of the National Academy of Science USA 94: 9944–9949

    Google Scholar 

  • Harris A. E., Ermentrout G. B., Small S. L. (2000) A model of ocular dominance column development by competition for trophic factor: Effects of excess trophic factor with monocular deprivation and effects of antagonist of trophic factor. Journal of Computational Neuroscience 8: 227–250

    Google Scholar 

  • Hebb D. O. (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Hodgkin A. L., Huxley A. F. (1939) Action potentials recorded from inside a nerve fiber. Nature 144: 710–711

    Google Scholar 

  • Hollyday M., Hamburger V. (1976) Reduction in naturally occurring motor neuron loss by enlargement of the periphery. Journal of Comparative Neurology 170: 311–320

    Google Scholar 

  • Huang E. J., Reichardt L. F. (2001) Neurotrophins: Roles in neuronal development and function. Annual Review of Neuroscience 24: 677–736

    Google Scholar 

  • Hubel D. H., Wiesel T. N. (1965) Binocular interaction in striate cortex of kittens reared with artificial squint. Journal of Neurophysiology 28: 1041–1059

    Google Scholar 

  • Hubel D. H., Wiesel T. N. (1972) Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. Journal of Comparative Neurology 146: 421–450

    Google Scholar 

  • Hubel D. H., Wiesel T. N., LeVay S. (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 278: 377–409

    Google Scholar 

  • Hull D. L., Langman R. E., Glenn S. S. (2001) A general account of selection: Biology, immunology and behavior. Behavioral and Brain Sciences 24: 511–527

    Google Scholar 

  • Hyman S. E., Malenka R. C., Nestler E. J. (2006) Neural mechanisms of addiction: The role of reward-related learning and memory. Annual Review of Neuroscience 29: 565–598

    Google Scholar 

  • Jerne N. K. (1955) The natural-selection theory of antibody formation. Proceedings of the National Academy of Sciences of the United States of America 41(11): 849–857

    Google Scholar 

  • Jerne N. K. (1967) Antibodies and learning: Selection vs. instruction. In: Quarton G. C., Melnechuk T., Schmitt F. O. (Eds.) The neurosciences: A study program. Rockefeller University Press, New York, pp 200–205

    Google Scholar 

  • Johnson E. M. Jr., Deckworth T. L. (1993) Molecular mechanisms of developmental neuronal death. Annual Review of Neuroscience 16: 31–46

    Google Scholar 

  • Kandel E. R., Schwartz J. H., Jessell T. M. (2000) Principles of neural science (4th ed.). McGraw Hill, New York

    Google Scholar 

  • Kaplan D. M. (2011) Explanation and description in computational neuroscience. Synthese 183: 339–373

    Google Scholar 

  • Katz L. C., Shatz J. C. (1996) Synaptic activity and the construction of cortical circuits. Science 234: 1133–1138

    Google Scholar 

  • Kingsbury J. (2008) Learning and selection. Biology and Philosophy 23: 493–507

    Google Scholar 

  • Lederberg J. (1959) Genes and antibodies. Science 129: 1649–1653

    Google Scholar 

  • LeDoux J. (2002) Synaptic self: How our brains become who we are. Penguin, New York

    Google Scholar 

  • Lennox J. G., Wilson B. E. (1994) Natural selection and the struggle for existence. Studies in the History and Philosophy of Science 25: 65–80

    Google Scholar 

  • Levi-Montalcini R., Cohen S. (1960) Effects of the extract of the mouse submaxillary glands on the sympathetic system of mammals. Annals of the New York Academy of Sciences 85: 324–341

    Google Scholar 

  • Lewens T. (2007) Functions. In: Matthen M., Stevens C., Gabbay D. M., Thagard P., Woods J. (Eds.) Philosophy of biology. Elsevier, Amsterdam, pp 525–547

    Google Scholar 

  • Lewontin R. C. (1970) The units of selection. Annual Review of Ecology and Systematics 1: 1–18

    Google Scholar 

  • Lichtman J. W., Burden S. J., Culican S. M., Wong R. O. L. (1999) Synapse formation and elimination. In: Zigmond M. J., Bloom F. E., Landis S. C., Roberts J. L., Squire L. R. (Eds.) Fundamental neuroscience. Academic Press, San Diego, pp 547–580

    Google Scholar 

  • Machamer P., Darden L., Craver C. F. (2000) Thinking about mechanisms. Philosophy of Science 67: 1–25

    Google Scholar 

  • Maclaurin J., Sterelny K. (2008) What is biodiversity?. University of Chicago, Chicago

    Google Scholar 

  • Mameli M., Bellone C., Brown M. T. C., Lüscher C. (2011) Cocaine inverts rules for synaptic plasticity of glutamate transmission in the ventral tegmental area. Nature Neuroscience 14: 414–416

    Google Scholar 

  • McDowell J. J. (2009) Behavioral and neural darwinism: Selectionist function and mechanism in adaptive behavior dynamics. Behavioural Processes 84(1): 358–365

    Google Scholar 

  • Meyer R. L. (1998) Roger Sperry and his chemoaffinity hypothesis. Neuropsychologia 36: 957–980

    Google Scholar 

  • Meyer R. L., Sperry R. (1976) Retinotectal specificity: Chemoaffinity theory. In: Gottlieb G. (Ed.) Studies on the development of behavior and the nervous system, vol. 3: Neural and behavioral specificity. Academic Press, New York, pp 111–149

    Google Scholar 

  • Millikan R. G. (1984) Language, thought, and other biological categories. MIT Press, Cambridge

    Google Scholar 

  • Millikan R. G. (1989) In defense of proper functions. Philosophy of Science 56: 288–302

    Google Scholar 

  • Millikan R. G. (2002) Biofunctions: Two paradigms. In: Ariew A., Cummins R., Perlman M. (Eds.) Functions: New essays in the philosophy of psychology and biology. Oxford University Press, Oxford, pp 113–143

    Google Scholar 

  • Millstein R. L. (2009) Populations as individuals. Biological Theory 4: 267–273

    Google Scholar 

  • Mitchell S. D. (1995) Function, fitness, and disposition. Biology and Philosophy 10: 39–54

    Google Scholar 

  • Neander, K. (1983). Abnormal psychobiology. Dissertation, La Trobe.

  • Neander K. (1991) Functions as selected effects: The conceptual analyst’s defense. Philosophy of Science 58: 168–184

    Google Scholar 

  • Neander K. (1999) Fitness and the fate of unicorns. In: Hardcastle V. G. (Ed.) Where biology meets psychology. MIT Press, Cambridge MA, pp 3–26

    Google Scholar 

  • Neander K. (2008) Teleological theories of mental content: Can Darwin solve the problem of intentionality?. In: Ruse M. (Ed.) The Oxford handbook of philosophy of biology. Oxford University Press, Oxford, pp 381–409

    Google Scholar 

  • Okasha S. (2003) Does the concept of “clade selection” make sense?. Philosophy of Science 70: 739–751

    Google Scholar 

  • Oppenheim R. W. (1989) The neurotrophic theory and naturally occurring motoneuron death. Trends in Neurosciences 12: 252–255

    Google Scholar 

  • Oppenheim R. W. (1991) Cell death during development of the nervous system. Annual Review of Neuroscience 14: 453–501

    Google Scholar 

  • Papineau D. (1987) Reality and representation. Blackwell, Oxford

    Google Scholar 

  • Papineau D. (1993) Philosophical naturalism. Blackwell, Oxford

    Google Scholar 

  • Papineau D. (1995) Mental disorder, illness and biological disfunction. In: Griffiths A. P. (Ed.) Philosophy, psychology and psychiatry. Cambridge University Press, Cambridge, pp 73–82

    Google Scholar 

  • Pettmann B., Henderson C. E. (1998) Neuronal cell death. Neuron 20: 653–660

    Google Scholar 

  • Piccinini G., Craver C. (2011) Integrating psychology and neuroscience: Functional analyses as mechanism sketches. Synthese 183: 283–311

    Google Scholar 

  • Price D. J., Jarman A. P., Mason J. O., Kind P. C. (2011) Building brains: An introduction to neural development. Wiley-Blackwell, Chichester

    Google Scholar 

  • Porges S. W., Carter C. S. (2011) Mechanisms, mediators, and adaptive consequences of caregiving. In: Brown S. L., Brown R. M., Penner L. A. (Eds.) Moving beyond self-interest: Perspectives from evolutionary biology, neuroscience, and the social sciences. Oxford University Press, Oxford, pp 53–71

    Google Scholar 

  • Purves D. (1988) A new theory of brain function. The Quarterly Review of Biology 63: 202–204

    Google Scholar 

  • Purves D. (1994) Neural activity and the growth of the brain. Cambridge University Press, Cambridge

    Google Scholar 

  • Purves D., White L. E., Riddle D. R. (1996) Is neural development darwinian?. Trends in Neuroscience 19: 460–464

    Google Scholar 

  • Quartz S. R., Sejnowski T. J. (1997) The neural basis of cognitive development: A constructivist manifesto. Behavioral and Brain Sciences 20: 537–596

    Google Scholar 

  • Rakic P. (1976) Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 261: 467–471

    Google Scholar 

  • Robbins T. W., Everitt B. J. (1999) Drug addiction: Bad habits add up. Nature 398: 567–570

    Google Scholar 

  • Schaffner K. (1993) Discovery and explanation in biology and medicine. University of Chicago Press, Chicago

    Google Scholar 

  • Schlaggar B. L., McCandliss B. D. (2007) Development of neural systems for reading. Annual Review of Neuroscience 30: 475–503

    Google Scholar 

  • Scholes J. (1979) Nerve fiber topography in the retinal projection to the tectum. Nature 278: 620–624

    Google Scholar 

  • Schultz W. (1998) Predictive reward signal of dopamine neurons. Journal of Neurophysiology 80: 1–27

    Google Scholar 

  • Schwartz P. H. (1999) Proper function and recent selection. Philosophy of Science 66: S210–S222

    Google Scholar 

  • Skinner B. F. (1953) Science and human behavior. The Free Press, New York

    Google Scholar 

  • Skinner B. F. (1981) Selection by consequences. Science 213: 501–504

    Google Scholar 

  • Sober E. (1984) The nature of selection. MIT Press, Cambridge

    Google Scholar 

  • Sober E., Wilson D. S. (1998) Unto others: The evolution and psychology of unselfish behavior. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Sperry R. (1951) Mechanisms of neural maturation. In: Stevens S. S. (Ed.) Handbook of experimental psychology. Wiley, Newyork, pp 236–280

    Google Scholar 

  • Sperry R. (1963) Chemoaffinity in the orderly growth of nerve fiber patterns of connections. Proceedings of the National Academy of Sciences of the United States of America 50: 703–710

    Google Scholar 

  • Sporns O. (1997a) Variation and selection in neural function. Trends in Neurosciences 20: 291

    Google Scholar 

  • Sporns O. (1997b) Deconstructing neural constructivism. Behavioral and Brain Sciences 20: 576–577

    Google Scholar 

  • Van Ooyen A. (2011) Using theoretical models to analyze neural development. Nature Reviews Neuroscience 12: 311–326

    Google Scholar 

  • Walicke P. A. (1989) Novel neurotrophic factors, receptors, and oncogenes. Annual Review of Neuroscience 12: 103–126

    Google Scholar 

  • Walsh D. M., Ariew A. (1996) A taxonomy of functions. Canadian Journal of Philosophy 26: 493–514

    Google Scholar 

  • Weiskopf D. A. (2011) Models and mechanisms in psychological explanation. Synthese 183: 313–338

    Google Scholar 

  • Wiesel T. N., Hubel D. H. (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology 26: 1003–1017

    Google Scholar 

  • Wilson D. S. (1975) A theory of group selection. Proceedings of the National Academy of Sciences USA 72: 143–146

    Google Scholar 

  • Wimsatt W. C. (1972) Teleology and the logical structure of function statements. Studies in the History and Philosophy of Science 3: 1–80

    Google Scholar 

  • Wouters A. (2003) Four notions of biological function. Studies in the History and Philosophy of Biological and Biomedical Sciences 34: 633–668

    Google Scholar 

  • Wright L. (1973) Functions. Philosophical Review 82: 139–168

    Google Scholar 

  • Wright L. (1976) Teleological explanations: An etiological analysis of goals and functions. University of California Press, Berkeley

    Google Scholar 

  • Young J. Z. (1936) The structure of nerve fibres in cephalopods and Crustacea. Proceedings of the Royal Society of London B 121: 319–337

    Google Scholar 

  • Young J. Z. (1964) A model of the brain. Clarendon Press, Oxford

    Google Scholar 

  • Yuan J., Horvitz H. R. (1990) The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Developmental Biology 138: 33–41

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Garson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garson, J. Function, selection, and construction in the brain. Synthese 189, 451–481 (2012). https://doi.org/10.1007/s11229-012-0122-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-012-0122-y

Keywords

Navigation