Skip to main content
Log in

Novel type of mixed O–H···N/O–H···π hydrogen bonds: monohydrate of pyridine

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Investigation of characteristics of hydrogen bonding between pyridine and water by MP2/aug-cc-pvdz method reveals that these two molecules may form three types of hydrogen bonds depending on nature of proton withdrawal site of pyridine. Change of orientation of water with respect to plane of aromatic ring leads to transformation of the O–H···N bond to O–H···π bond via wide region of the potential energy surface where both lone pair of the nitrogen atom and π-system make significant contribution into hydrogen bonding. Hydrogen bond in this intermediate region may be considered as mixed O–H···N/O–H···π bond representing new type of H bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Scheiner S (1997) Hydrogen bonding. A theoretical perspective. Oxford University Press, New York

    Google Scholar 

  2. Grabowski S (ed) (2006) Hydrogen bonding: new insights. Challenges & advances in computational chemistry & physics, vol 3, Springer, Dordrecht

  3. Meot-Ner (Mautner) M (2005) Chem Rev 105:213. doi:10.1021/cr9411785

    Article  Google Scholar 

  4. Steiner T (2002) Angew Chem Int Ed 41:48. doi:10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U

    Article  CAS  Google Scholar 

  5. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, Oxford

    Google Scholar 

  6. Sukhanov OS, Shishkin OV, Gorb L, Podolyan Y, Leszczynski J (2003) J Phys Chem B 107:2846. doi:10.1021/jp026487a

    Article  CAS  Google Scholar 

  7. Sukhanov OS, Shishkin OV, Gorb L, Leszczynski J (2008) Struct Chem 19:171. doi:10.1007/s11224-007-9266-7

    Article  CAS  Google Scholar 

  8. Boys SF, Bernardi F (1970) Mol Phys 19:553. doi:10.1080/00268977000101561

    Article  CAS  Google Scholar 

  9. Meumier A, Levy B, Berthier G (1973) Theor Chim Acta 29:49. doi:10.1007/BF00528166

    Article  Google Scholar 

  10. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.01, Gaussian Inc., Wallingford, CT

  11. Weinhold F (1998) Natural bond orbital methods. In: Encyclopedia of computational chemistry, vol 3. John Wiley & Sons, Chichester, p 1792

  12. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899. doi:10.1021/cr00088a005

    Article  CAS  Google Scholar 

  13. King BF, Weinhold F (1995) J Chem Phys 103:333. doi:10.1063/1.469645

    Article  CAS  Google Scholar 

  14. Weinhold F (1997) J Mol Struct THEOCHEM 398:181. doi:10.1016/S0166-1280(96)04936-6

    Article  Google Scholar 

  15. Wong NB, Cheung YS, Wu DY, Ren Y, Tian AM, Li WK (2000) J Mol Struct THEOCHEM 507:153. doi:10.1016/S0166-1280(99)00386-3

    Article  CAS  Google Scholar 

  16. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2005) NBO 5.0. Theoretical Chemistry Institute. University of Wisconsin, Madison, USA

    Google Scholar 

  17. Bader RWF (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  18. Biegler-König F, Schönbohm J, Bayles D (2001) J Comput Chem 22:545. doi:10.1002/1096-987X(20010415)22:5<545::AID-JCC1027>3.0.CO;2-Y

    Article  Google Scholar 

  19. Espinosa E, Molins E, Lecomte C (1998) Chem Phys Lett 285:170. doi:10.1016/S0009-2614(98)00036-0

    Article  CAS  Google Scholar 

  20. Lyssenko KA, Korlyukov AA, Golovanov DG, Ketkov SY, Antipin MY (2006) J Phys Chem A 110:6543. doi:10.1021/jp057516v

    Article  Google Scholar 

  21. Lyssenko KA, Antipin MY (2006) Russ Chem Bull 55:1. doi:10.1007/s11172-006-0208-0

  22. Destexhe A, Smets J, Adamowicz L, Maes G (1994) J Phys Chem 98:1506. doi:10.1021/j100056a023

    Article  CAS  Google Scholar 

  23. Dkhissi A, Adamowicz L, Maes G (2000) J Phys Chem A 104:2112. doi:10.1021/jp9938056

    Article  CAS  Google Scholar 

  24. Smets J, McCarthy W, Maes G, Adamowicz L (1999) J Mol Struct 476:27. doi:10.1016/S0022-2860(98)00536-5

    Article  CAS  Google Scholar 

  25. Cambridge Crystal Structure Database. Release (2008)

  26. Baxter PNW, Connor JA, Wallis JD, Povey DC, Powell AK (1992) J Chem Soc Perkin Trans 1 1601. doi:10.1039/p19920001601

  27. Langer P, Hoffmann HMR (1997) Tetrahedron 53:9145. doi:10.1016/S0040-4020(97)00609-1

    Article  CAS  Google Scholar 

  28. Langer P, Hoffmann HMR, Wartchow R (1998) Z Kristallogr New Cryst Struct 213:193

    CAS  Google Scholar 

  29. Opozda EM, Lasocha W, Wlodarczyk-Gajda B (2006) J Mol Struct 784:149. doi:10.1016/j.molstruc.2005.08.034

    Article  CAS  Google Scholar 

  30. Larson SB, Sanghvi YS, Revankar GR, Robins RK (1990) Acta Crystallogr C 46:791. doi:10.1107/S0108270189008498

    Article  Google Scholar 

  31. Padilla-Martinez II, Martinez-Martinez FJ, Garcia-Baez EV, Torres-Valencia JM, Rojas-Lima S, Hopfl H (2001) J Chem Soc Perkin Trans 2 181

Download references

Acknowledgments

This work was supported by the NSF CREST Grant No. HRD–0318519.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg V. Shishkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shishkin, O.V., Konovalova, I.S., Gorb, L. et al. Novel type of mixed O–H···N/O–H···π hydrogen bonds: monohydrate of pyridine. Struct Chem 20, 37–41 (2009). https://doi.org/10.1007/s11224-009-9412-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9412-5

Keywords

Navigation