Skip to main content

Advertisement

Log in

Influence of motivation, self-beliefs, and instructional practices on science achievement of adolescents in Canada

  • Published:
Social Psychology of Education Aims and scope Submit manuscript

Abstract

This study examined the effects of motivation to learn science, science self-beliefs, and science instructional practices on science achievement of 13,985 15-year-old students from 431 schools across Canada. Hierarchical linear modeling (HLM) analyses, while controlling for student- and school-level demographic characteristics, revealed the substantial predictive effects of motivation to learn science, science self-beliefs, and science instructional practices on science achievement of adolescents. Motivational beliefs—self-efficacy and self-concept—and enjoyment of science had substantial positive predictive effects on science achievement. In contrast, general interest in science had a negative predictive effect on science achievement in the context of other variables. Whereas science teaching using hands-on activities had a substantial positive predictive effect on science achievement, science teaching using student investigations had a substantial negative predictive effect in the context of other variables. The final HLM model indicated that only 8% of the variance in science achievement was between schools and 92% of the variance involved students within schools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ainley M., Corrigan M., Richardson N. (2005) Students, tasks, and emotions: Identifying the contribution of emotions to students’ reading of popular culture and popular science texts. Learning and Instruction 15: 433–447. doi:10.1016/j.learninstruc.2005.07.011

    Article  Google Scholar 

  • Ainley M., Hidi S., Berndorff D. (2002) Interest, learning, and the psychological processes that mediate their relationship. Journal of Educational Psychology 94: 545–561. doi:10.1037/0022-0663.94.3.545

    Article  Google Scholar 

  • Allison P. D. (2002) Missing data. Sage, Thousand Oaks

    Google Scholar 

  • Bandura A. (1986) Social foundations of thought and action: A social cognitive theory. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Beamer T., Sickle M. V., Harrison G., Temple G. (2008) Lasting impact of a professional development program on constructivist science teaching. Journal of Elementary Science Education 20: 49–60. doi:10.1007/BF03173676

    Article  Google Scholar 

  • Bentley M. L., Ebert E. S., Ebert C. (2007) Teaching constructivist science, K-8: Nurturing natural investigators in the standards-based classroom. Corwin Press, Thousand Oaks, CA

    Google Scholar 

  • Berland L. K., Reiser B. J. (2009) Making sense of argumentation and explanation. Science Education 93: 26–55

    Article  Google Scholar 

  • Bickel R. (2007) Multilevel analysis for applied research: It’s just regression. Guilford Press, New York

    Google Scholar 

  • Black A. E., Deci E. L. (2000) The effects of instructors’ autonomy support and students’ autonomous motivation on learning organic chemistry: A self-determination theory perspective. Science Education 84: 740–756. doi:10.1002/1098-237X(200011)84:6<740::AID-SCE4>3.0.CO;2-3

    Article  Google Scholar 

  • Blanchard M. R., Southerland S. A., Granger E. M. (2009) No silver bullet for inquiry: Making sense of teacher change following an inquiry-based research experience for teachers. Science Education 93: 322–360. doi:10.1002/sce.20298

    Article  Google Scholar 

  • Bliese P.D. (2000) Within-group agreement, non-independence, and reliability: implications for data aggregation and analysis. In: Klein K. J., Kozlowski S. W. (eds) Multilevel theory, research, and methods in organizations. Jossey-Bass, San Francisco, CA, pp 349–381

    Google Scholar 

  • Bong M., Clark R. E. (1999) Comparison between self-concept and self-efficacy in academic motivation research. Educational Psychologist 34: 139–153. doi:10.1207/s15326985ep3403_1

    Article  Google Scholar 

  • Bong M., Skaalvik E. M. (2003) Academic self-concept and self-efficacy: How different are they really?. Educational Psychology Review 15: 1–40

    Article  Google Scholar 

  • Braun H., Jenkins F., Grigg W., Tirre W. (2006) Comparing private schools and public schools using hierarchical linear modeling. National Center for Education Statistics, Washington, DC

    Google Scholar 

  • Britner S. L. (2008) Motivation in high school science students: A comparison of gender differences in life, physical, and earth science classes. Journal of Research in Science Teaching 45: 955–970. doi:10.1002/tea.20249

    Article  Google Scholar 

  • Britner S. L., Pajares F. (2001) Self-efficacy beliefs, motivation, race, and gender in middle school science. Journal of Women and Minorities in Science and Engineering 7: 271–285

    Google Scholar 

  • Britner S. L., Pajares F. (2006) Sources of science self-efficacy beliefs of middle school students. Journal of Research in Science Teaching 43: 485–499. doi:10.1002/tea.20131

    Article  Google Scholar 

  • Burton K. D., Lydon J. E., D’Alessandro D. U., Koestner R. (2006) The differential effects of intrinsic and identified motivation on well-being and performance: Prospective, experimental, and implicit approaches to self-determination theory. Journal of Personality and Social Psychology 91: 750–762. doi:10.1037/0022-3514.91.4.750

    Article  Google Scholar 

  • Bussière P., Knighton T., Pennock D. (2007) Measuring up: Canadian results of the OECD PISA study. The performance of Canada’s Youth in science, reading, and mathematics. 2006 first results for Canadians aged 15. Human Resources and Social Development Canada, Ottawa, ON, Canada

    Google Scholar 

  • Bybee R. W. (2000) Teaching science as inquiry. In: Minstrell J., van Zee E. H. (eds) Inquiry into inquiry learning and teaching in science. American Association for the Advancement of Science, Washington, DC, pp 20–46

    Google Scholar 

  • Caprara G. V., Fida R., Vecchione M., Del Bove G., Vecchio G.M., Barbaranelli C., Bandura A. (2008) Longitudinal analysis of the role of perceived self-efficacy for self-regulated learning in academic continuance and achievement. Journal of Educational Psychology 100: 525–534. doi:10.1037/0022-0663.100.3.525

    Article  Google Scholar 

  • Caro D. H., McDonald J. D., Willms J. D. (2009) Socioeconomic status and academic achievement trajectories from childhood to adolescence. Canadian Journal of Education 32: 558–590

    Google Scholar 

  • Castro S. L. (2002) Data analytic methods for the analysis of multilevel questions. Leadership Quarterly 13: 69–93. doi:10.1016/S1048-9843(01)00105-9

    Article  Google Scholar 

  • Chien C., Jen T., Chang S. (2008) Academic self-concept and achievement within and between math and science: An examination on Marsh and Köller’s unification model. Bulletin of Educational Psychology 40: 107–126

    Google Scholar 

  • Chin C. (2007) Teacher questioning in science classrooms: Approaches that stimulate productive thinking. Journal of Research in Science Teaching 44: 815–843. doi:10.1002/tea.20171

    Article  Google Scholar 

  • Chirkov V. I., Ryan R. M. (2001) Parent and teacher autonomy-support in Russian and U.S. adolescents: Common effects on well-being and academic motivation. Journal of Cross-Cultural Psychology 32: 618–635. doi:10.1177/0022022101032005006

    Article  Google Scholar 

  • Chiu M. (2008) Achievements and self-concepts in a comparison of math and science: exploring the internal/external frame of reference model across 28 countries. Educational Research and Evaluation 14: 235–254. doi:10.1080/13803610802048858

    Article  Google Scholar 

  • Crawford B. A. (2000) Embracing the essence of inquiry: New roles for science teachers. Journal of Research in Science Teaching 37: 916–937. doi:10.1002/1098-2736(200011)37:9<916::AID-TEA4>3.3.CO;2-U

    Article  Google Scholar 

  • Crawford B. A. (2007) Learning to teach science as inquiry in the rough and tumble of practice. Journal of Research in Science Teaching 44: 613–642. doi:10.1002/tea.20157

    Article  Google Scholar 

  • Crawford T. (2005) What counts as knowing: Constructing a communicative repertoire for student demonstration of knowledge in science. Journal of Research in Science Teaching 42: 139–165. doi:10.1002/tea.20047

    Article  Google Scholar 

  • Dekkers J., de Laeter J. (2001) Enrollment trends in school science education in Australia. International Journal of Science Education 23: 487–500. doi:10.1080/09500690118451

    Google Scholar 

  • Dermitzaki I., Leondari A., Goudas M. (2009) Relations between young students’ strategic behaviors, domain-specific self-concept, and performance in a problem-solving situation. Learning and Instruction 19: 144–157. doi:10.1016/j.learninstruc.2008.03.002

    Article  Google Scholar 

  • Dori Y. J., Sasson I., Kaberman Z., Herscovitz O. (2004) Integrating case-based computerized laboratories into high school chemistry. The Chemical Educator 9: 1–5

    Google Scholar 

  • Dori Y. J., Sasson I. (2008) Chemical understanding and graphing skills in an honors case-based computerized chemistry laboratory environment: The value of bidirectional visual and textual representations. Journal of Research in Science Teaching 45: 219–250. doi:10.1002/tea.20197

    Article  Google Scholar 

  • Driver R., Newton P., Osborne J. (2000) Establishing the norms of scientific argumentation in classrooms. Science Education 84: 287–313

    Article  Google Scholar 

  • Duschl R. A., Osborne J. (2002) Supporting and promoting argumentation discourse in science education. Studies in Science Education 38: 39–72. doi:10.1080/03057260208560187

    Article  Google Scholar 

  • Duschl, R. A., Schweingruber, H. A., Shouse, A. W. (eds) (2007) Taking science to school: Learning and teaching science in grades K-8. National Academy Press, Washington, DC

    Google Scholar 

  • Dweck C. S., Master A. (2008) Self-theories and self-regulated learning. In: Schunk D. H., Zimmerman B. J. (eds) Motivation and self-regulated learning: Theory, research, and applications. Lawrence Erlbaum, New York, pp 31–51

    Google Scholar 

  • Eccles J. S., Simpkins S.D., Davis-Kean P. E. (2006) Math and science motivation: A longitudinal examination of the links between choices and beliefs. Developmental Psychology 42: 70–83. doi:10.1037/0012-1649.42.1.70

    Article  Google Scholar 

  • Eccles J. S., Wigfield A. (1995) In the mind of the actor: The structure of adolescent achievement task values and expectancy related beliefs. Society for Personality and Social Psychology Bulletin 21: 215–225

    Article  Google Scholar 

  • Echevarria M. (2003) Hands on science reform, science achievement, and the elusive goal of ‘science for all’ in a diverse elementary school district. Journal of Women and Minorities in Science and Engineering 9: 375–402

    Article  Google Scholar 

  • Ee J., Moore P. J., Atputhasamy L. (2003) High-achieving students: Their motivational goals, self-regulation, and achievement and relationship to their teachers’ goals and strategy-based instruction. High Ability Studies 14: 23–39

    Article  Google Scholar 

  • Enders C. K., Tofighi D. (2007) Centering predictor variables in cross-sectional multilevel models: A new look at an old issue. Psychological Methods 12: 121–138. doi:10.1037/1082-989X.12.2.121

    Article  Google Scholar 

  • Freedman M. P. (1997) Relationship among laboratory instruction, attitude toward science, and achievement in science knowledge. Journal of Research in Science Teaching 34: 343–357

    Article  Google Scholar 

  • Fuligni A. J., Fuligni A. S. (2007) Immigrant families and the educational development of their children. In: Lansford J. E., Deater-Deckard K., Bornstein M. H. (eds) Immigrant families in contemporary society: Duke series in child development and public policy. Guilford Press, New York, pp 231–249

    Google Scholar 

  • Geier R., Blumenfeld P. C., Marx R. W., Krajcik J. S., Fishman B., Soloway E., Clay-Chambers J. (2008) Standardized test outcomes for students engaged in inquiry-based science curricula in the context of urban reform. Journal of Research in Science Teaching 45: 922–939. doi:10.1002/tea.20248

    Article  Google Scholar 

  • Glaser-Zikuda M., Fusz S. (2008) Impact of teacher competencies on student emotions: A multi-method approach. International Journal of Educational Research 47: 136–147. doi:10.1016/j.ijer.2007.11.013

    Article  Google Scholar 

  • Glaser-Zikuda M., Fusz S., Laukenmann M., Metz K., Randler C. (2005) Promoting students’ emotions and achievement—instructional design and evaluation of the ECOLE-approach. Learning and Instruction 15: 481–495. doi:10.1016/j.learninstruc.2005.07.013

    Article  Google Scholar 

  • Goodrum D., Hackling M., Rennie L. (2001) The status and quality of teaching and learning of science in Australian schools. Department of Education, Training, and Youth Affairs, Canberra, Australia

    Google Scholar 

  • Greene B. A., Miller R. B., Crowson H. M., Duke B. L., Akey K. L. (2004) Predicting high school students’ cognitive engagement and achievement: Contributions of classroom perceptions and motivation. Contemporary Educational Psychology 29: 462–482. doi:10.1016/j.cedpsych.2004.01.006

    Article  Google Scholar 

  • Guay F., Marsh H. W., Boivin M. (2003) Academic self-concept and academic achievement: A developmental perspective on their causal ordering. Journal of Educational Psychology 95: 124–136. doi:10.1037/0022-0663.95.1.124

    Article  Google Scholar 

  • Haas J. (2005) The situation in industry and the loss of interest in science education. European Journal of Education 40: 405–416. doi:10.1111/j.1465-3435.2005.00236.x

    Article  Google Scholar 

  • Hassan G. (2008) Attitudes toward science among Australian tertiary and secondary school students. Research in Science & Technological Education 26: 129–147. doi:10.1080/02635140802034762

    Article  Google Scholar 

  • Heck R. H., Thomas S. L. (2000) An introduction to multilevel modeling techniques. Erlbaum, Mahwah, NJ

    Google Scholar 

  • Hidi S., Ainley M. (2008) Interest and self-regulation: Relationships between two variables that influence learning. In: Schunk D. H., Zimmerman B. J. (eds) Motivation and self-regulated learning: Theory, research, and applications. Lawrence Erlbaum, New York, pp 77–109

    Google Scholar 

  • Hidi S., Ainley M., Berndorff B., Del Favero L. (2006) The role of interest and self-efficacy in science-related expository writing. In: Hidi S., Boscolo P. (eds) Motivation and interest in writing. Elsevier, Amsterdam, pp 201–216

    Google Scholar 

  • Hidi S., Renninger A. (2006) The four-phase model of interest development. Educational Psychologist 41: 111–127. doi:10.1207/s15326985ep4102_4

    Article  Google Scholar 

  • Hofstede G. (2001) Culture’s consequences: Comparing values, behaviors, institutions, and organizations across nations, 2nd edn. Sage, Thousand Oaks, CA

    Google Scholar 

  • Hofstein A. (2004) The laboratory in chemistry education: thirty years of experience with developments, implementation and evaluation. Chemistry Education Research and Practice 5: 247–264

    Google Scholar 

  • Hofstein A., Kipnis M., Kind P. (2008) Learning in and from science laboratories: Enhancing students’ metacognition and argumentation skills. In: Petroselli C. L. (eds) Science education issues and developments. Nova Science, New York, pp 59–94

    Google Scholar 

  • Hofstein A., Lunetta V. N. (2004) The laboratory in science education: Foundations for the twenty-first century. Science Education 88: 28–54. doi:10.1002/sce.10106

    Article  Google Scholar 

  • House , J. D. (1993) The relationship between academic self-concept and school withdrawal. Journal of Social Psychology, 133: 125–127

    Article  Google Scholar 

  • House J. D. (2006) The effects of classroom instructional strategies on science achievement of elementary-school students in Japan: Findings from the Third International Mathematics and Science Study (TIMSS). International Journal of Instructional Media 33: 217–229

    Google Scholar 

  • House J. D. (2008) Science beliefs, instructional strategies, and life sciences achievement in Japan: Results from the TIMSS 1999 assessment. International Journal of Instructional Media 35: 103–113

    Google Scholar 

  • House J. D. (2009) Classroom instructional strategies and science career interest for adolescent students in Korea: Results from the TIMSS 2003 assessment. Journal of Instructional Psychology 36: 13–19

    Google Scholar 

  • Howes E. V., Lim M., Campos J. (2009) Journeys into inquiry-based elementary science: Literacy practices, questioning, and empirical study. Science Education 93: 189–217. doi:10.1002/sce.20297

    Article  Google Scholar 

  • Hox J. J. (2002) Multilevel analysis: Techniques and applications. Lawrence Erlbaum, Mahwah, NJ

    Google Scholar 

  • Ireson J., Hallam S. (2009) Academic self-concepts in adolescence: Relations with achievement and ability grouping in schools. Learning and Instruction 19: 201–213. doi:10.1016/j.learninstruc.2008.04.001

    Article  Google Scholar 

  • Jeon M. J., Lee G. M., Hwang J. W., Kang S. J. (2008) Estimating reliability of school-level scores using multilevel and generalizability theory models. Asia Pacific Education Review 10: 149–158. doi:10.1007/s12564-009-9014-3

    Article  Google Scholar 

  • Kaberman Z., Dori Y. J. (2009a) Question posing, inquiry, and modeling skills of high school chem- istry students in the case-based computerized laboratory environment. International Journal of Science and Mathematics Education 7: 597–625. doi:10.1007/s10763-007-9118-3

    Article  Google Scholar 

  • Kaberman Z., Dori Y. J. (2009b) Metacognition in chemical education: Question posing in the case-based computerized learning environment. Instructional Science 37: 403–436. doi:10.1007/s11251-008-9054-9

    Article  Google Scholar 

  • Kim M. C., Hannafin M. J., Bryan L. A. (2007) Technology-enhanced inquiry tools in science education: An emerging pedagogical framework for classroom practice. Science Education 91: 1010–1030. doi:10.1002/sce.20219

    Article  Google Scholar 

  • Kipnis M., Hofstein A. (2008) The inquiry laboratory as a source for development of metacognitive skills. International Journal of Science and Mathematics Education 6: 601–627. doi:10.1007/s10763-007-9066-y

    Article  Google Scholar 

  • Klahr D., Triona L. M., Williams C. (2007) Hands on what? the relative effectiveness of physical versus virtual materials in an engineering design project by middle school children. Journal of Research in Science Teaching 44: 183–203. doi:10.1002/tea.20152

    Article  Google Scholar 

  • Klinger D. A., Rogers W. T., Anderson J. O., Poth C., Calman R. (2006) Contextual and school factors associated with achievement on a high stakes examination. Canadian Journal of Education 29: 748–774

    Article  Google Scholar 

  • Krajcik J., Blumenfeld P. C., Marx R., Soloway E. (2000) Instructional, curricular, and technological supports for inquiry in science classrooms. In: Minstrell J., Zee E. H. (eds) Inquiring into inquiry learning and teaching in science. American Association for the Advancement of Science, Washington, DC, pp 283–315

    Google Scholar 

  • Kreft I., De Leeuw J. (1998) Introducing multilevel modeling. Sage, London

    Google Scholar 

  • Kunter M., Baumert J., Köller O. (2007) Effective classroom management and the development of subject-related interest. Learning and Instruction 17: 494–509. doi:10.1016/j.learninstruc.2007.09.002

    Article  Google Scholar 

  • Kupermintz H. (2002) Affective and conative factors as aptitude resources in high school science achievement. Educational Assessment 8: 123–137

    Article  Google Scholar 

  • Lau S., Roeser R. W. (2002) Cognitive abilities and motivational processes in high school students’ situational engagement and achievement in science. Educational Assessment 8: 139–162. doi:10.1207/S15326977EA0802_04

    Article  Google Scholar 

  • Laurie B. (2009) Overcoming challenges and succeeding in PISA science 2006. In: Rodger W. B., McCrae B. J. (eds) PISA science 2006: Implications for science teachers and teaching. NSTA Press, Arlington, VA, pp 91–99

    Google Scholar 

  • Lavigne, G. L., Vallerand, R. J. (in press). The dynamic processes of influence between contextual and situational motivation: A test of the hierarchical model in a science education setting. Journal of Applied Social Psychology

  • Lavonen J., Laaksonen S. (2009) Context of teaching and learning school science in Finland: Reflections on PISA 2006 results. Journal of Research in Science Teaching 46: 922–944. doi:10.1002/tea.20339

    Article  Google Scholar 

  • Lawrenz F., Wood N. B., Kirchhoff A., Kim N. K., Eisenkraft A. (2009) Variables affecting physics achievement. Journal of Research in Science Teaching 46: 961–976. doi:10.1002/tea.20292

    Article  Google Scholar 

  • Lawson A. E., Banks D. L., Logvin M. (2007) Self-efficacy, reasoning ability, and achievement in college biology. Journal of Research in Science Teaching 44: 706–724. doi:10.1002/tea.20172

    Article  Google Scholar 

  • LeBreton J. M., Senter J. L. (2008) Answers to 20 questions about interrater reliability and interrater agreement. Organizational Research Methods 11: 815–852. doi:10.1177/1094428106296642

    Article  Google Scholar 

  • Lehrer R., Schauble L. (2006) Cultivating model-based reasoning in science education. In: Sawyer K. (eds) Cambridge handbook of the learning sciences. Cambridge University Press, Cambridge, MA, pp 371–388

    Google Scholar 

  • Lemke J. L. (1990) Talking science: Language, learning, and values. Ablex, Norwood, NJ

    Google Scholar 

  • Lemke J. L. (2001) Articulating communities: Sociocultural perspectives on science education. Journal of Research in Science Teaching 38: 296–316. doi:10.1002/1098-2736

    Article  Google Scholar 

  • Lens W., Vansteenkiste M. (2008) Promoting self-regulated learning: A motivational analysis. In: Schunk D. H., Zimmerman B. J. (eds) Motivation and self-regulated learning: Theory, research, and applications. Lawrence Erlbaum, New York, pp 141–168

    Google Scholar 

  • Linn M. C., Clark D. B., Slotta J. D. (2003) WISE design for knowledge integration. Science Education 87: 517–538. doi:10.1002/sce.10086

    Article  Google Scholar 

  • Little R. J. A., Rubin D. B. (2002) Statistical analysis with missing data. Wiley, Hoboken, NJ

    Google Scholar 

  • Liu, X., Spybrook, J., Congdon, R., Martinez, A., Raudenbush, S. W. (2009). Optimal design for longitudinal and multilevel research (Version 2.0) [Computer Software]. Retrieved from http://www.wtgrantfoundation.org/resources/overview/research_tools.

  • Lodewyk K. R., Winne P. H. (2005) Relations among the structure of learning tasks, achievement, and changes in self-efficacy in secondary students. Journal of Educational Psychology 97: 3–12. doi:10.1037/0022-0663.97.1.3

    Article  Google Scholar 

  • Lüdtke O., Trautwein U., Kunter M., Baumert J. (2006) Reliability and agreement of student ratings of the classroom environment: A reanalysis of TIMSS data. Learning Environments Research 9: 215–230. doi:10.1007/s10984-006-9014-8

    Article  Google Scholar 

  • Lunetta V. N., Hofstein A., Clough M. P. (2007) Learning and teaching in school laboratory: An analysis of research, theory, and practice. In: Abell S., Ledeman N. (eds) Handbook of research on science education. Lawrence Erlbaum, Mahwah, NJ, pp 393–441

    Google Scholar 

  • Luyten H., Peschar J., Coe R. (2008) Effects of schooling on reading performance, reading engagement and reading activities of 15-year-olds in England. American Educational Research Journal 45: 319–342. doi:10.3102/0002831207313345

    Article  Google Scholar 

  • Lyons T. (2006) Different countries, same science classrooms: Students’ experiences of school science in their own words. International Journal of Science Education 28: 591–613. doi:10.1080/09500690500339621

    Article  Google Scholar 

  • Ma X., Crocker R. (2007) Provincial effects on reading achievement. Alberta Journal of Educational Research 53: 87–109

    Google Scholar 

  • Maas C. J. M., Hox J. J. (2005) Sufficient sample sizes for multilevel modeling. Methodology: European Journal of Research Methods for the Behavioral & Social Sciences 1: 85–91

    Google Scholar 

  • Marsh H. W. (1990) The structure of academic self-concept: The Marsh/Shavelson model. Journal of Educational Psychology 82: 623–636

    Article  Google Scholar 

  • Marsh H. W. (1993) Academic self-concept: Theory measurement and research. In: Suls J. (eds) Psychological perspectives on the self (Vol. 4). Lawrence Erlbaum, Hillsdale, NJ, pp 59–98

    Google Scholar 

  • Marsh H. W., Craven R. G. (1997) Academic self-concept: Beyond the dustbowl. In: Phye G. (eds) Handbook of classroom assessment: Learning, achievement, and adjustment. Academic Press, Orlando, FL, pp 131–198

    Google Scholar 

  • Marsh H. W., Craven R. G. (2006) Reciprocal effects of self-concept and performance from a multidimensional perspective: Beyond seductive pleasure and unidimensional perspectives. Perspectives on Psychological Science 1: 133–163. doi:10.1111/j.1745-6916.2006.00010.x

    Article  Google Scholar 

  • Marsh H. W., O’ Mara A. J. (2008) Reciprocal effects between academic self-concept, self-esteem, achievement, and attainment over seven adolescent-adult years: Unidimensional and multidimensional perspectives of self-concept. Personality and Social Psychology Bulletin 34: 542–552. doi:10.1177/0146167207312313

    Article  Google Scholar 

  • Marsh H. W., Trautwein U., Lüdtke O., Köller O. (2008) Social comparison and big-fish-little-pond effects on self-concept and efficacy perceptions: Role of generalized and specific others. Journal of Educational Psychology 100: 510–524. doi:10.1037/0022-0663.100.3.510

    Article  Google Scholar 

  • Marsh H. W., Trautwein U., Lüdtke O., Köller O., Baumert J. (2005) Academic self-concept, interest, grades and standardized test scores: Reciprocal effects models of causal ordering. Child Development 76: 397–416. doi:10.1111/j.1467-8624.2005.00853.x

    Article  Google Scholar 

  • Marsh H. W., Yeung A. S. (1997) Causal effects of academic self-concept on academic achievement: Structural equation models of longitudinal data. Journal of Educational Psychology 89: 41–54. doi:10.1037/0022-0663.89.1.41

    Article  Google Scholar 

  • Marsh H. W., Yeung A. S. (1998) Longitudinal structural equation models of academic self-concept and achievement: Gender differences in the development of math and English constructs. American Educational Research Journal 35: 705–738. doi:10.3102/00028312035004705

    Google Scholar 

  • Martin M. O., Mullis I. V. S., Foy P. (2008) TIMSS 2007 international science report: Findings from IEA’s Trends in International Mathematics and Science Study at the fourth and eighth grades. TIMSS & PIRLS International Study Center, Boston College, Chestnut Hill, MA

    Google Scholar 

  • Martin R., Sexton C., Franklin T., Gerlovich J., McElroy D. (2009) Teaching science for all children: Inquiry methods for constructing understanding, 4th edn. Allyn & Bacon, Boston

    Google Scholar 

  • Mazlo J., Dormedy D. F., Neimoth-Anderson J. D., Urlacher T., Carson G. A., Kelter P. B. (2002) Assessment of motivational methods in the general chemistry laboratory. Journal of College Science Teaching 36: 318–321

    Google Scholar 

  • McBride B. A., Dyer W. J., Liu Y., Brown G. L., Hong S. (2009) The differential impact of early father and mother involvement on later student achievement. Journal of Educational Psychology 101: 498–508. doi:10.1037/a0014238

    Article  Google Scholar 

  • McCarthy C. B. (2005) Effects of thematic-based, hands-on science teaching versus a textbook approach for students with disabilities. Journal of Research in Science Teaching 42: 245–263. doi:10.1002/tea.20057

    Article  Google Scholar 

  • McNeill K. L. (2009) Teachers’ use of curriculum to support students in writing scientific arguments to explain phenomena. Science Education 93: 233–268. doi:10.1002/sce.20294

    Article  Google Scholar 

  • McNeill K. L., Pimentel D. S. (2009) Scientific discourse in three urban classrooms: The role of the teacher in engaging high school students in argumentation. Science Education. Advance online publication doi:10.1002/sce.20364.

  • Millar R., Osborne J. (1998) Beyond 2000. Science education for the future. Nuffield Foundation, London

    Google Scholar 

  • Miller R. B., Brickman S. J. (2004) A model of future-oriented motivation and self-regulation. Educational Psychology Review 16: 9–33. doi:10.1023/B:EDPR.0000012343.96370.39

    Article  Google Scholar 

  • Miller R. B., Greene B. A., Montalvo G. P., Ravindran B., Nichols J. D. (1996) Engagement in academic work: The role of learning goals, future consequences, pleasing others and perceived ability. Contemporary Educational Psychology 21: 388–422. doi:10.1006/ceps.1996.0028

    Article  Google Scholar 

  • Mok M. (1995) Sample size requirements for 2-level designs in educational research. Multilevel Modeling Newsletter 7: 11–15

    Google Scholar 

  • Möller J., Pohlmann B., Köller O., Marsh H. W. (2009) A meta-analytic path analysis of the internal/ external frame of reference model of academic achievement and academic self-concept. Review of Educational Research 79: 1129–1167. doi:10.3102/0034654309337522

    Article  Google Scholar 

  • Murphy C., Beggs J. (2003) Children’s perceptions of school science. School Science Review 84: 109–116

    Google Scholar 

  • National Research Council: (1996) National Science Education Standards. National Academy Press, Washington, DC

    Google Scholar 

  • National Research Council: (2000) Inquiry and the National Science Education Standards: A guide for teaching and learning. National Academy Press, Washington, DC

    Google Scholar 

  • National Research Council: (2001) Educating teachers of science and mathematics, and technology: New practices for the new millennium. National Academy Press, Washington, DC

    Google Scholar 

  • National Research Council: (2005) National Science Education Standards. National Academy Press, Washington, DC

    Google Scholar 

  • National Research Council: (2007) Taking science to school: Learning and teaching science in grades K-8. National Academies Press, Washington, DC

    Google Scholar 

  • Neber H., Schommer-Aikins M. (2002) Self-regulated science learning with highly gifted students: The role of cognitive, motivational, epistemological, and environmental variables. High Ability Studies 13: 59–74. doi:10.1080/13598130220132316

    Article  Google Scholar 

  • Newman D. A. (2003) Longitudinal modeling with randomly and systematically missing data: A simulation of ad hoc, maximum likelihood, and multiple imputation techniques. Organizational Research Methods 6: 328–362. doi:10.1177/1094428103254673

    Article  Google Scholar 

  • Niemiec C. P., Ryan R. M. (2009) Autonomy, competence, and relatedness in the classroom: Applying self-determination theory to educational practice. Theory and Research in Education 7: 133–144. doi:10.1177/1477878509104318

    Article  Google Scholar 

  • Nolen S. B. (2003) Learning environment, achievement, and motivation in high school science. Journal of Research in Science Teaching 40: 347–368. doi:10.1002/tea.1008

    Article  Google Scholar 

  • Organization for Economic Cooperation and Development. (2006). Assessing scientific, reading, and mathematical literacy: A framework for PISA 2006. Paris: Author.

  • Organization for Economic Cooperation and Development: (2007) PISA 2006 science competencies for tomorrow’s world. Author, Paris

    Google Scholar 

  • Organization for Economic Cooperation and Development: (2009a) PISA data analysis manual. Author, Paris

    Google Scholar 

  • Organization for Economic Cooperation and Development: (2009b) PISA 2006 technical report. Author, Paris

    Google Scholar 

  • Osborne J., Simon S., Collins S. (2003) Attitudes towards science: A review of the literature and its implications. International Journal of Science Education 25: 1049–1079. doi:10.1080/0950069032000032199

    Article  Google Scholar 

  • Ozkal K., Tekkaya C., Cakiroglu J., Sungur S. (2009) A conceptual model of relationships among constructivist learning environment perceptions, epistemological beliefs, and learning approaches. Learning and Individual Differences 19: 71–79. doi:10.1016/j.lindif.2008.05.005

    Article  Google Scholar 

  • Pajares F. (2008) Motivational role of self-efficacy beliefs in self-regulated learning. In: Schunk D. H., Zimmerman B. J. (eds) Motivation and self-regulated learning: Theory, research, and applications. Lawrence Erlbaum, New York, pp 111–139

    Google Scholar 

  • Palmer D. H. (2008) Constructivist-informed classroom teaching: The importance and potential of motivation research. In: Petroselli C. L. (eds) Science education issues and developments. Nova Science, New York, pp 201–222

    Google Scholar 

  • Peterson M. F., Castro S. L. (2006) Measurement metrics at aggregate levels of analysis: Implications for organization culture research and the GLOBE project. The Leadership Quarterly 17: 506–521. doi:10.1016/j.leaqua.2006.07.001

    Article  Google Scholar 

  • Peugh J. L., Enders C. K. (2004) Missing data in educational research: A review of reporting practices and suggestions for improvement. Review of Educational Research 74: 525–556. doi:10.3102/00346543074004525

    Article  Google Scholar 

  • Pintrich P. R., DeGroot E. V. (1990) Motivational and self-regulated learning components of classroom academic performance. Journal of Educational Psychology 82: 33–40

    Article  Google Scholar 

  • Polman J. L., Pea R. D. (2001) Transformative communication as a cultural tool for guiding inquiry science. Science Education 85: 223–238. doi:10.1002/sce.1007

    Article  Google Scholar 

  • Raudenbush S. W., Bryk A. S. (2002) Hierarchical linear models: Applications and data analysis methods, 2nd edn. Sage, Thousand Oaks, CA

    Google Scholar 

  • Raudenbush S. W., Bryk A. S., Cheong Y. F., Congdon R. (2004) HLM 6: Hierarchical linear and nonlinear modeling. Scientific Software, Lincolnwood, IL

    Google Scholar 

  • Reeve J. (2002) Self-determination theory applied to educational settings. In: Deci E. L., Ryan R. M. (eds) Handbook of self-determination research. Rochester University Press, Rochester, NY, pp 183–202

    Google Scholar 

  • Reeve J., Jang H., Hardre P., Omura M. (2002) Providing a rationale in an autonomy- supportive way as a strategy to motivate others during an uninteresting activity. Motivation and Emotion 26: 183–207

    Article  Google Scholar 

  • Renninger K. A., Hidi S. (2002) Student interest and achievement: Developmental issues raised by a case study. In: Wigfield A., Eccles J. S. (eds) The development of achievement motivation. Academic Press, New York, pp 173–195

    Chapter  Google Scholar 

  • Rowlands S. (2008) The crisis in science education and need to enculturate all learners in science. In: Petroselli C. L. (eds) Science education: Issues and developments. Nova Science, New York, pp 95–123

    Google Scholar 

  • Rubin D. B. (1987) Multiple imputation for nonresponse in surveys. Wiley, New York

    Book  Google Scholar 

  • Ryan R. M., Deci E. L. (2000) Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist 55: 68–78. doi:10.1037/0003-066X.55.1.68

    Article  Google Scholar 

  • Sampson V., Clark D. (2009) The impact of collaboration on the outcomes of scientific argumentation. Science Education 93: 448–484. doi:10.1002/sce.20306

    Article  Google Scholar 

  • Schafer J. L. (1997) Analysis of incomplete multivariate data. Chapman and Hall, New York

    Book  Google Scholar 

  • Schafer J. L., Olsen M. K. (1998) Multiple imputation for multivariate missing data problems: A data analyst’s perspective. Multivariate Behavioral Research 33: 545–571

    Article  Google Scholar 

  • Scherbaum C. A., Ferreter J. M. (2009) Estimating statistical power and required sample sizes for organizational research using multilevel modeling. Organizational Research Methods 12: 347–367. doi:10.1177/1094428107308906

    Article  Google Scholar 

  • Schunk D. H. (1985) Self-efficacy and classroom learning. Psychology in the Schools 22: 208–223

    Article  Google Scholar 

  • Schunk D. H., Ertmer P. (2000) Self-regulation and academic learning: Self-efficacy enhancing interventions. In: Boekaerts M., Pintrich P. R., Zeidner M. (eds) Handbook of self-regulation. Academic Press, San Diego, CA, pp 631–649

    Google Scholar 

  • Scott P. H., Mortimer E. F., Aguiar O. G. (2006) The tension between authoritative and dialogic discourse: A fundamental characteristic of meaning making interactions in high school science lessons. Science Education 90: 605–631. doi:10.1002/sce.20131

    Article  Google Scholar 

  • Sere M. G. (2002) Towards renewed research questions from the outcomes of the European project Labwork in Science Education. Science Education 86: 624–644. doi:10.1002/sce.10040

    Article  Google Scholar 

  • Shen C., Tam H. P. (2008) The paradoxical relationship between student achievement and self-perception: A cross-national analysis based on three waves of TIMSS data. Educational Research and Evaluation 14: 87–100. doi:10.1080/13803610801896653

    Article  Google Scholar 

  • Simons J., Vansteenkiste M., Lens W., Lacante M. (2004) Placing motivation and future time perspective theory in a temporal perspective. Educational Psychology Review 16: 121–139. doi:10.1023/B:EDPR.0000026609.94841.2f

    Article  Google Scholar 

  • Skaalvik E. M. (1996) Self-concept and self-efficacy: Conceptual analysis. Paper presented at the annual meeting of the American Educational Research Association, New York

    Google Scholar 

  • Southerland S. A., Gess-Newsome J., Johnston A. (2003) Portraying science in the classroom: The manifestation of scientists’ beliefs in classroom practice. Journal of Research in Science teaching 40: 669–691. doi:10.1002/tea.10104

    Article  Google Scholar 

  • SPSS: (2009) PASW SPSS for Windows (Version 18.0) [Computer software]. SPSS, Chicago

    Google Scholar 

  • Spybrook J. (2008) Power and sample size for classroom and school-level interventions. In: O’Connell A., McCoach B. (eds) Multilevel modeling of educational data. Information Age Publishing, Greenwich, CT, pp 273–311

    Google Scholar 

  • Stamovlasis D., Dimos A., Tsaparlis G. (2006) A study of group interaction processes in learning lower secondary physics. Journal of Research in Science Teaching 43: 556–576. doi:10.1002/tea.20134

    Article  Google Scholar 

  • Statistics Canada: (2009) University enrollment, 2007/2008. Ministry of Industry, Ottawa, ON, Canada

    Google Scholar 

  • Stohr-Hunt P. M. (1996) An analysis of frequency of hands-on experience and science achievement. Journal of Research in Science Teaching 33: 101–109

    Article  Google Scholar 

  • Tabachnick B. G., Fidell L. S. (2007) Using multivariate statistics, 5th edn. Allyn & Bacon, Boston

    Google Scholar 

  • Trautwein U., Niggli A., Schnyder I., Lüdtke O. (2009) Between-teacher differences in homework assignments and the development of students’ homework effort, homework emotions, and achievement. Journal of Educational Psychology 101: 176–189. doi:10.1037/0022-0663.101.1.176

    Article  Google Scholar 

  • Trautwein U., Lüdtke O., Kastens C., Köller O. (2006) Effort on homework in Grades 5 through 9: Development, motivational antecedents, and the association with effort on classwork. Child Development 77: 1094–1111. doi:10.1111/j.1467-8624.2006.00921.x

    Article  Google Scholar 

  • Tretter T. R., Jones M. G. (2003) Relationships between inquiry-based teaching and physical science standardized test scores. School Science and Mathematics 103: 345–350

    Article  Google Scholar 

  • Tsai Y., Kunter M., Lüdtke O., Trautwein U., Ryan R. M. (2008) What makes lessons interesting? The role of situational and individual factors in three school subjects. Journal of Educational Psychology 100: 460–472. doi:10.1037/0022-0663.100.2.460

    Article  Google Scholar 

  • Tuan H., Chin C., Shieh S. (2005) The development of a questionnaire to measure students’ motivation towards science learning. International Journal of Science Education 27: 639–654. doi:10.1080/0950069042000323737

    Article  Google Scholar 

  • Valentine J. C., DuBois D. L. (2005) Effects of self-beliefs on academic achievement and vice-versa: Separating the chicken from the egg. In: Marsh H. W., Craven R. G., McInerney D. M. (eds) International advances in self research, (Vol. 2). Information Age, Greenwich, CT, pp 53–78

    Google Scholar 

  • Valentine J. C., DuBois D. L., Cooper H. (2004) The relations between self-beliefs and academic achievement: A meta-analytic review. Educational Psychologist 39: 111–133. doi:10.1207/s15326985ep3902_3

    Article  Google Scholar 

  • Vansteenkiste M., Simons J., Lens W., Soenens B., Matos L., Lacante M. (2004) Less is sometimes more: Goal content matters. Journal of Educational Psychology 96: 755–764. doi:10.1037/0022-0663.96.4.755

    Article  Google Scholar 

  • Walker C. O., Greene B. A. (2009) Motivational beliefs and cognitive engagement in high school. Journal of Educational Research 102: 463–471

    Article  Google Scholar 

  • Wang J., Oliver J. S., Staver J. R. (2008) Self-concept and science achievement: Investigating a reciprocal relation model across the gender classification in a crosscultural context. Journal of Research in Science Teaching 45: 711–725. doi:10.1002/tea.20182

    Article  Google Scholar 

  • Wigfield A., Eccles J. S. (2002) The development of competence beliefs, expectancies of success, and achievement values from childhood through adolescence. In: Wigfield A., Eccles J. S. (eds) Development of achievement motivation. Academic Press, San Diego, CA, pp 91–120

    Chapter  Google Scholar 

  • Willms J.D. (1999) Basic concepts in hierarchical linear modeling with applications for policy analysis. In: Cizek G.J. (eds) Handbook of educational policy. Academic Press, New York, pp 473–493

    Chapter  Google Scholar 

  • Windschitl M. (2003) Inquiry projects in science teacher education: What can investigative experiences reveal about teacher thinking and eventual classroom practice?. Science Education 87: 112–143

    Article  Google Scholar 

  • Wolf S. J., Fraser B. J. (2008) Learning environment, attitudes and achievement among middle-school science students using inquiry-based laboratory activities. Research Science Education 38: 321–341. doi:10.1007/s11165-007-9052-y

    Article  Google Scholar 

  • Wu Y., Tsai C. (2005) Development of elementary school students’ cognitive structures and information processing strategies under long-term constructivist-oriented science instruction. Science Education 89: 822–846. doi:10.1002/sce.20068

    Article  Google Scholar 

  • Yerrick, R. K., Roth, W. M. (eds) (2005) Establishing scientific classroom discourse communities: Multiple voices of teaching and learning research. Lawrence Erlbaum, Mahwah, NJ

    Google Scholar 

  • Yoon C. (2009) Self-regulated learning and instructional factors in the scientific inquiry of scientifically gifted Korean middle school students. Gifted Child Quarterly 53: 203–216. doi:10.1177/0016986209334961

    Article  Google Scholar 

  • Zeidner M., Schleyer E. J. (1999) The big-fish-little-pond effect for academic self-concept, test anxiety, and school36 grades in gifted children. Contemporary Educational Psychology 24: 305–329. doi:10.1006/ceps.1998.0985

    Article  Google Scholar 

  • Zeldin A., Britner S., Pajares F. (2008) A comparative study of the self-efficacy beliefs of successful men and women in mathematics, science, and technology careers. Journal of Research in Science Teaching 45: 1036–1058. doi:10.1002/tea.20195

    Article  Google Scholar 

  • Zeldin A., Pajares F. (2000) Against the odds: Self-efficacy beliefs of women in mathematical, scientific, and technological careers. American Educational Research Association 37: 215–246. doi:10.3102/00028312037001215

    Google Scholar 

  • Zusho A., Pintrich P. R. (2003) Skill and will: The role of motivation and cognition in the learning of college chemistry. International Journal of Science Education 25: 1081–1094. doi:10.1080/0950069032000052207

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaljan Areepattamannil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Areepattamannil, S., Freeman, J.G. & Klinger, D.A. Influence of motivation, self-beliefs, and instructional practices on science achievement of adolescents in Canada. Soc Psychol Educ 14, 233–259 (2011). https://doi.org/10.1007/s11218-010-9144-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11218-010-9144-9

Keywords

Navigation