Skip to main content
Log in

Coupled Clouds and Chemistry of the Giant Planets— A Case for Multiprobes

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

In seeking to understand the formation of the giant planets and the origin of their atmospheres, the heavy element abundance in well-mixed atmosphere is key. However, clouds come in the way. Thus, composition and condensation are intimately intertwined with the mystery of planetary formation and atmospheric origin. Clouds also provide important clues to dynamical processes in the atmosphere. In this chapter we discuss the thermochemical processes that determine the composition, structure, and characteristics of the Jovian clouds. We also discuss the significance of clouds in the big picture of the formation of giant planets and their atmospheres. We recommend multiprobes at all four giant planets in order to break new ground.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anders, E. and Grevesse, N.: 1989, ‘Abundances of the elements—Meteoritic and solar’, Geochim. Cosmochim. Acta 53, 197–214.

    Article  Google Scholar 

  • Atreya, S.K., Donahue, T.M., and Kuhn, W.R.: 1977, ‘The distribution of ammonia and its photochemical products on Jupiter’, Icarus 31, 348–355.

    Article  Google Scholar 

  • Atreya, S.K., Kuhn, W.R., and Donahue, T.M.: 1980, ‘Saturn: Tropospheric ammonia and nitrogen’, Geophys. Res. Lett. 7, 474–476.

    Google Scholar 

  • Atreya, S.K. and Romani, P.N.: 1985, ‘Photochemistry and clouds of Jupiter, Saturn and Uranus’, in G.E. Hunt (ed.), Planetary Meteorology, Cambridge University Press, pp. 17–68.

  • Atreya, S.K.: 1986, Atmospheres and Ionospheres of the Outer Planets and their Satellites, Chapter 3, Springer-Verlag, New York-Berlin.

    Google Scholar 

  • Atreya, S.K., Wong, M.H., Owen, T.C., Niemann, H.B., and Mahaffy, P.R.: 1997, ‘Chemistry and clouds of the atmosphere of Jupiter: A Galileo Perspective’, in C. Barbieri et al. (eds.), Three Galileos: The Man, The Spacecraft, The Telescope, Kluwer, Dordrecht, The Netherlands, pp. 249–260.

    Google Scholar 

  • Atreya, S.K., Wong, M.H., Owen, T.C., Mahaffy, P.R., Niemann, H.B., de Pater, I., Drossart, P., and Encrenaz, Th.: 1999, ‘A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin’, Planet. Space Sci. 47, 1243–1262.

    Article  PubMed  Google Scholar 

  • Atreya, S.K., Mahaffy, P.R., Niemann, H.B., Wong, M.H., and Owen, T.C.: 2003, ‘Composition and origin of the atmosphere—an update, and implications for the extrasolar giant planets’, Planet. Space Sci. 51, 105–112.

    Article  Google Scholar 

  • Atreya, S.K.: 2004, ‘Composition, clouds, and origin of Jupiter’s atmosphere — a case for deep multiprobes into giant planets’, ESA SP-544, 57–62.

    Google Scholar 

  • Baines, K.H., Carlson, R.W. and Kamp, L.W.: 2002, ‘Fresh ammonia ice clouds in Jupiter. I. Spectroscopic identification, spatial distribution, and dynamical implications’, Icarus 159, 74–94.

    Article  Google Scholar 

  • Banfield, D., Gierasch, P.J., Bell, M., Ustinov, E., Ingersoll, A.P, Vasavada, A.R., West, R.A., and Belton, M.J.S.: 1998, ‘Jupiter’s cloud structure from Galileo imaging data’, Icarus 135, 230–250.

    Article  Google Scholar 

  • Brooke, T.Y., Knacke, R.F., Encrenaz, Th., Drossart, P., and Crisp, D.: 1998, ‘Models of the ISO 3-μm reflectance spectrum of Jupiter’, Icarus 136, 1–13.

    Article  Google Scholar 

  • de Pater, I.: 1986, ‘Jupiter’s zone-belt structure at radio wavelengths’, Icarus 68, 344–369.

    Article  Google Scholar 

  • Dyudina, U.A., Del Genio, A.D., Ingersoll, A.P., Porco, C., West, R.A., Vasavada, A.R., and Barbara, J.M.: 2003, ‘Lightning on Jupiter observed in the Hα line by the Cassini Imaging Science Subsystem’, submitted to Icarus.

  • Folkner, W.M., Woo, R., and Nandi, S.: 1998, ‘Ammonia abundance in Jupiter’s atmosphere derived from attenuation of the Galileo probe’s radio signal’, J. Geophys. Res. 103, 22,847–22,856.

    Google Scholar 

  • Friedson, A.J., Wong, A.S., and Yung, Y.L.: 2002, ‘Models for polar haze formation in Jupiter’s stratosphere’, Icarus 158, 389–400.

    Article  Google Scholar 

  • Gautier, D., Hersant, F., Mousis, O., and Lunine, J.I.: 2001a, ‘Enrichment in volatiles in Jupiter: A new interpretation of the Galileo measurements’, Astrophys. J. 550, L227–L230.

    Article  Google Scholar 

  • Gautier, D., Hersant, F., Mousis, O., and Lunine, J.I.: 2001b, ‘Erratum: Enrichment in volatiles in Jupiter: A new interpretation of the Galileo measurements’, Astrophys. J. 559, L183.

    Article  Google Scholar 

  • Gierasch, P.J., Ingersoll, A.P., Banfield, D., Ewald, S.P., Helfenstein, P., Simon-Miller, A., Vasavada, A., Breneman, H.H., Senske, D.A., and the Galileo Imaging Team: 2000, ‘Observation of moist convection in Jupiter’s atmosphere’, Nature 403, 628–630.

    Article  PubMed  Google Scholar 

  • Huygens, C.: 1698, Kosmotheoros, English translation, ‘The Celestial Worlds Discover’d: or, Conjectures Concerning the Inhabitants, Plants and Productions of the Worlds in the Planets’, Frank Cass & Co. Ltd., England, pp. 25–26.

  • Ingersoll, A.P., Gierasch, P.J., Banfield, D., Vasavada, A.R., and the Galileo Imaging Team: 2000, ‘Moist convection as an energy source for the large-scale motions in Jupiter’s atmosphere’, Science 403, 630–632.

    Google Scholar 

  • Irwin, P.G.J., Weir, A.L., Taylor, F.W., Calcutt, S.B., and Carlson, R.W.: 2001, ‘The origin of belt/zone contrasts in the atmosphere of Jupiter and their correlation with 5-μm opacity’, Icarus 149, 397–415.

    Article  Google Scholar 

  • Niemann, H.B., et al.: 1998, ‘The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer’, J. Geophys. Res. 103, 22,831–22,846.

    Google Scholar 

  • Owen, T.C., Atreya, S.K., Mahaffy, P., Niemann, H.B. and Wong, M.H.: 1997, ‘On the origin of Jupiter’s atmosphere and the volatiles on the Medicean Stars’, in C. Barbieri et al. (eds.), Three Galileos: The Man, The Spacecraft, The Telescope, Kluwer, Dordrecht, The Netherlands, pp. 289–297.

    Google Scholar 

  • Owen, T., Mahaffy, P.R., Niemann, H.B., Atreya, S.K., Donahue, T., Bar-Nun, A., and de Pater, I.: 1999, ‘A low-temperature origin for the planetesimals that formed Jupiter’, Nature 402, 269–270.

    Article  PubMed  Google Scholar 

  • Podolak, M., Hubbard W.B., and Stevenson D.J.: 1991, ‘Models of Uranus interior and magnetic field’, in J. Bergstralh, et al. (eds.), Uranus, The University of Arizona Press, Tucson, pp. 48–49.

    Google Scholar 

  • Ragent, B., Rages, K.A., Knight, T.C.D., Arvin, P., and Orton, G.S.: 1998. ‘The clouds of Jupiter: Results of the Galileo Jupiter mission probe nephelometer experiment’, J. Geophys. Res. 103, 22,891–22,909.

    Google Scholar 

  • Seiff, A., Kirk, D.B., Knight, T.C.D., Young, R.E., Mihalov, J.D., Young, L.A., Milos, F.S., Schubert, G., Blanchard, R.C. and Atkinson, D.: 1998, ‘Thermal structure of Jupiter’s atmosphere near the edge of a 5-μm hot spot in the north equatorial belt’, J. Geophys. Res. 103, 22,857–22,889.

    Google Scholar 

  • Ree, F.H.: 1986, ‘A new approach to multiphase equilibria: Applications to high pressure physics problems’, Physica 139–140B, 73–78.

    Google Scholar 

  • Showman, A.P. and Dowling, T.: 2000, ‘Nonlinear simulations of Jupiter’s 5 micron hotspots’, Science 289, 1737–1740.

    PubMed  Google Scholar 

  • Sromovsky, L.A. and Fry, P.M.: 2002, ‘Jupiter’s cloud structure as constrained by Galileo Probe and HST observations’, Icarus 157, 373–400.

    Article  Google Scholar 

  • Strobel, D.F.: 1973, ‘The photochemistry of NH3 in the Jovian atmosphere’, J. Atmos. Sci. 30, 1205.

    Article  Google Scholar 

  • Tomasko, M.G., West, R.A., Orton, G.S., and Tejfel, V.G.: 1984, ‘Clouds and aerosols in Saturn’s atmosphere’, in T. Gehrels and M.S. Matthews (eds.), Saturn, The University of Arizona Press, Tucson, pp. 150–194.

    Google Scholar 

  • Weidenschilling, S.J. and Lewis, J.S.: 1973, ‘Atmospheric and cloud structure of the Jovian planets’, Icarus 20, 465–476.

    Article  Google Scholar 

  • West, R.A., Strobel, D.F., and Tomasko, M.G.: 1986, ‘Clouds, aerosols, and photochemistry in the Jovian atmosphere’, Icarus 65, 161–217.

    Article  Google Scholar 

  • West, R.A., Orton, G.S., Draine, B.T., and Hubbell, E.A.: 1989, ‘Infrared absorption features for tetrahedral ammonia ice crystals’, Icarus 80, 220–224.

    Article  Google Scholar 

  • Wong, A.S., Yung, Y.L., and Friedson, A.J.: 2003, ‘Benzene and haze formation in the polar atmosphere of Jupiter’, Geophys. Res. Lett. 30, 1447.

    Article  Google Scholar 

  • Wong, A.S. and Atreya, S.K.: 2004, ‘Benzene, and other hydrocarbons on Saturn’, EGS abstract, EGU04-A-02239, Nice, France.

  • Wong, M.H., Bjoraker, G.L., Smith, M.D., Flasar, F.M., and Nixon, C.A.: 2004a, ‘Identification of the 10-μm ammonia ice feature on Jupiter’, Planet. Space Sci. 52, 385–395.

    Article  Google Scholar 

  • Wong, M.H., Mahaffy, P.R., Atreya, S.K., Niemann, H.B., and Owen, T.C.: 2004b, ‘Updated Galileo Probe Mass Spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter’, Icarus, in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil K. Atreya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atreya, S.K., Wong, AS. Coupled Clouds and Chemistry of the Giant Planets— A Case for Multiprobes. Space Sci Rev 116, 121–136 (2005). https://doi.org/10.1007/s11214-005-1951-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-005-1951-5

Keywords

Navigation