Skip to main content
Log in

Local stability of mappings with bounded distortion on Heisenberg groups

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

This is the second of the author’s three papers on stability in the Liouville theorem on the Heisenberg group. The aim is to prove that each mapping with bounded distortion of a John domain on the Heisenberg group is close to a conformal mapping with order of closeness \(\sqrt {K - 1} \) in the uniform norm and order of closeness K − 1 in the Sobolev norm L 1p for all \(p < \tfrac{C}{{K - 1}}\).

In this paper we prove a local variant of the desired result: each mapping on a ball with bounded distortion and distortion coefficient K near to 1 is close on a smaller ball to a conformal mapping with order of closeness \(\sqrt {K - 1} \) in the uniform norm and order of closeness K − 1 in the Sobolev norm L 1p for all \(p < \tfrac{C}{{K - 1}}\). We construct an example that demonstrates the asymptotic sharpness of the order of closeness of a mapping with bounded distortion to a conformal mapping in the Sobolev norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lavrent’ev M. A., “Sur une classe de représentations continués,” Mat. Sb., 42, No. 4, 407–424 (1935).

    MathSciNet  Google Scholar 

  2. Lavrent’ev M. A., “On stability in Liouville’s theorem,” Dokl. Akad. Nauk USSR, 95, No. 5, 925–926 (1954).

    MATH  MathSciNet  Google Scholar 

  3. Reshetnyak Yu. G., Stability Theorems in Geometry and Analysis, Kluwer Academic Publishers, Dordrecht (1994) (Mathematics and Its Applications; 304).

    MATH  Google Scholar 

  4. Korányi A. and Reimann H. M., “Quasiconformal mappings on the Heisenberg group,” Invent. Math., 80, 309–338 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  5. Korányi A. and Reimann H. M., “Foundations for the theory of quasiconformal mappings on the Heisenberg group,” Adv. Math., 111, No. 1, 1–87 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  6. Capogna L., “Regularity of quasilinear equations in the Heisenberg group,” Comm. Pure Appl. Math., 50, 867–889 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  7. Vodop’yanov S. K., “Mappings with bounded distortion and with finite distortion on Carnot groups,” Siberian Math. J., 40, No. 4, 644–677 (1999).

    Article  MathSciNet  Google Scholar 

  8. Dairbekov N. S., “Mappings with bounded distortion on Heisenberg groups,” Siberian Math. J., 41, No. 3, 465–487 (2000).

    Article  MathSciNet  Google Scholar 

  9. Isangulova D. V., “The class of mappings with bounded specific oscillation and integrability of mappings with bounded distortion on Carnot groups,” Siberian Math. J., 48, No. 2, 249–267 (2007).

    Article  MathSciNet  Google Scholar 

  10. Heinonen J. and Holopainen I., “Quasiregular maps on Carnot groups,” J. Geom. Anal., 7, No. 1, 109–148 (1997).

    MATH  MathSciNet  Google Scholar 

  11. Astala K., “Area distortion of quasiconformal mappings,” Acta Math., 173, 37–60 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  12. Romanovskii N. N., “Integral representations and embedding theorems for functions on the Heisenberg groups ℍn,” Algebra and Analysis, 16, No. 2, 82–119 (2004).

    MathSciNet  Google Scholar 

  13. Romanovskii N. N., “On Mikhlin’s problem on Carnot groups,” Siberian Math. J., 49, No. 1 (2008) (to appear).

  14. Isangulova D. V., “Stability in the Liouville theorem on Heisenberg groups,” Dokl. Math., 72, No. 3, 912–916 (2005).

    MATH  Google Scholar 

  15. Isangulova D. V., Stability in the Liouville Theorem on Heisenberg Groups [Preprint No. 158], Sobolev Institute of Mathematics, Novosibirsk (2005).

    Google Scholar 

  16. Vodop’yanov S. K., “P-differentiability on Carnot groups in different topologies and related topics,” in: Proceedings on Analysis and Geometry, Sobolev Institute Press, Novosibirsk, 2000, pp. 603–670.

    Google Scholar 

  17. Vodop’yanov S. K., “Closure of classes of mappings with bounded distortion on Carnot groups,” Siberian Adv. Math., 14, No. 1, 84–125 (2005).

    MathSciNet  Google Scholar 

  18. Folland G. B., Harmonic Analysis in Phase Space, Princeton Univ. Press, Princeton, NJ (1989) (Ann. Math. Stud.; 122).

    MATH  Google Scholar 

  19. Vodop’yanov S. K., “Foundations of the theory of mappings with bounded distortion on Carnot groups,” Dokl. Math., 72, No. 3, 829–833 (2005).

    MATH  Google Scholar 

  20. Vodopyanov S. K., “Foundations of the theory of mappings with bounded distortion on Carnot groups,” in: The Interaction of Analysis and Geometry, Amer. Math. Soc., Providence, RI, 2007, pp. 303–344 (Contemp. Math.; 424).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Isangulova.

Additional information

Original Russian Text Copyright © 2007 Isangulova D. V.

The author was partially supported by the Russian Foundation for Basic Research (Grant 06-01-00735), the State Maintenance Program for the Junior Scientists and the Leading Scientific Schools of the Russian Federation (Grant NSh-8526.2006.1), and INTAS (Grant YSF 03-55-905).

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 48, No. 6, pp. 1228–1245, November–December, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isangulova, D.V. Local stability of mappings with bounded distortion on Heisenberg groups. Sib Math J 48, 984–997 (2007). https://doi.org/10.1007/s11202-007-0101-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-007-0101-6

Keywords

Navigation