Skip to main content

Advertisement

Log in

Argumentation in Science Education: A Model-based Framework

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

The goal of this article is threefold: First, the theoretical background for a model-based framework of argumentation to describe and evaluate argumentative processes in science education is presented. Based on the general model-based perspective in cognitive science and the philosophy of science, it is proposed to understand arguments as reasons for the appropriateness of a theoretical model which explains a certain phenomenon. Argumentation is considered to be the process of the critical evaluation of such a model if necessary in relation to alternative models. Secondly, some methodological details are exemplified for the use of a model-based analysis in the concrete classroom context. Third, the application of the approach in comparison with other analytical models will be presented to demonstrate the explicatory power and depth of the model-based perspective. Primarily, the framework of Toulmin to structurally analyse arguments is contrasted with the approach presented here. It will be demonstrated how common methodological and theoretical problems in the context of Toulmin’s framework can be overcome through a model-based perspective. Additionally, a second more complex argumentative sequence will also be analysed according to the invented analytical scheme to give a broader impression of its potential in practical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. See Erduran et al. (2004), Bricker and Bell (2008), Erduran and Jiménez-Aleixandre (2008), Sampson and Clark (2008).

  2. See Patronis (1999), Sadler and Zeidler (2005), Sadler and Donelly (2006), Albe (2008), Hildebrand et al. (2008).

  3. See Kuhn et al. (1991), Walton (1996), van Eemeren et al. (2004), reviews e.g.: Bricker and Bell (2008), Sampson and Clark (2008).

  4. See Zohar and Nemet (2002), Osborne et al. (2004), Erduran et al. (2004).

  5. See Nersessian (2002, 2008a), Held et al. (2006), Johnson-Laird et al. (2009).

  6. See Kuhn (1993), Osborne et al. (2004), Simon et al. (2006).

  7. See Kelly et al. (1998), Voss and van Dyke (2001), Sampson and Clark (2008).

  8. See e.g. Kuhn et al. (1997), Kuhn and Udell (2007), Osborne et al. (2004), Simon et al. (2006).

References

  • Albe, V. (2008). Students’ positions and considerations of scientific evidence about a controversial socioscientific issue. Science & Education, 17, 805–827.

    Article  Google Scholar 

  • Baguley, T., & Payne, S. J. (2000). Long-term memory for spatial and temporal mental models includes construction processes and model structure. The Quarterly Journal of Experimental Psychology, 53A(2), 479–512.

    Google Scholar 

  • Bricker, L. A., & Bell, P. (2008). Conceptualizations of argumentation from science studies and the learning sciences and their implications for the practices of science education. Science Education, 92, 473–498.

    Article  Google Scholar 

  • Clement, J. J. (2008). Student/teacher co-construction of visualizable models in large group discussion. In J. J. Clement & M. A. Rea-Ramirez (Eds.), Model based learning and instruction in science. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Clement, J. J., & Rea-Ramirez, M. A. (Eds.). (2008). Model based learning and instruction in science. Dordrecht: Springer.

    Google Scholar 

  • Develaki, M. (2007). The model-based view of scientific theories and the structuring of school science programmes. Science & Education, 16, 725–749.

    Article  Google Scholar 

  • Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84, 287–312.

    Article  Google Scholar 

  • Erduran, S. (2008). Methodological foundations in the study of argumentation in science classrooms. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education. Dordrecht: Springer.

    Google Scholar 

  • Erduran, S., & Jiménez-Aleixandre, M. P. (2008). Argumentation in science education. Dordrecht: Springer.

    Google Scholar 

  • Erduran, S., Simon, S., & Osborne, J. (2004). TAPing into argumentation: Developments in the application of Toulmin’s argument pattern for studying science discourse. Science Education, 88, 915–933.

    Article  Google Scholar 

  • Felton, M., & Kuhn, D. (2001). The development of argumentive discourse skill. Discourse Processes, 32(2&3), 135–153.

    Article  Google Scholar 

  • Garcia-Mila, M., & Andersen, C. (2008). Cognitive foundations of learning argumentation. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education. Dordrecht: Springer.

    Google Scholar 

  • Giere, R. (1988). Explaining science: A cognitive approach. Chicago, London: University of Chicago Press.

    Google Scholar 

  • Giere, R. (1992). The cognitive construction of scientific knowledge. Social Studies of Science, 22, 95–107.

    Article  Google Scholar 

  • Giere, R. (1999). Science without laws. Chicago, London: University of Chicago Press.

    Google Scholar 

  • Giere, R. (2001). A new framework for teaching scientific reasoning. Argumentation, 15, 21–33.

    Article  Google Scholar 

  • Giere, R. (2004). How models are used to represent reality. Philosophy of Science, 71, 742–752.

    Article  Google Scholar 

  • Giere, R. (2010). An agent-based conception of models and scientific representation. Synthese, 172, 269–281.

    Article  Google Scholar 

  • Giere, R., Bickle, J., & Mauldin, R. F. (2006). Understanding scientific reasoning. Belmont, Calif (et al.): Thomson Wadsworth.

    Google Scholar 

  • Gilbert, S. W. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28(1), 73–79.

    Article  Google Scholar 

  • Grandy, R. E. (1997). Constructivisms and objectivity: Disentangling metaphysics from pedagogy. Science & Education, 6, 43–53.

    Article  Google Scholar 

  • Halloun, I. A. (2007). Mediated modelling in science education. Science & Education, 16, 653–697.

    Article  Google Scholar 

  • Held, C., Knauff, M., & Vosgerau, G. (Eds.). (2006). Mental models and the mind. Amsterdam (et al.): Elsevier.

    Google Scholar 

  • Hildebrand, D., Bilica, K., & Capps, J. (2008). Addressing controversies in science education: A pragmatic approach to evolution education. Science & Education, 17, 1033–1052.

    Article  Google Scholar 

  • Hodson, D. (1992). In search of a meaningful relationship: An exploration of some issues relating to integration in science and science education. International Journal of Science Education, 14, 541–562.

    Article  Google Scholar 

  • Hoyningen-Huene, P. (2008). Systematicity: The nature of science. Philosophia, 36, 167–180.

    Article  Google Scholar 

  • Izquierdo-Aymerich, M., & Aduriz-Bravo, A. (2003). Epistemological foundations of school science. Science & Education, 12, 27–43.

    Article  Google Scholar 

  • Jiménez-Aleixandre, M. P., Rodríguez, A. B., & Duschl, R. A. (Eds.) (2000). “Doing the Lesson” or “Doing Science”: Arguments in High School Genetics. Science Education 84, 757–792.

    Google Scholar 

  • Jiminéz-Aleixandre, M. P., & Erduran, S. (2008). Argumentation in science education. An overview. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education. Dordrecht: Springer.

    Google Scholar 

  • Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Cambridge (et al.): Cambridge University Press.

    Google Scholar 

  • Johnson-Laird, P. N. (2006). Mental models, sentential reasoning, and illusory inferences. In C. Held, M. Knauff, G. Vosgerau, et al. (Eds.), Mental models and the mind. Amsterdam (et al.): Elsevier.

    Google Scholar 

  • Johnson-Laird, P. N. (2009). How we reason. Oxford (et al.): Oxford University Press.

    Google Scholar 

  • Kelly, G. J., & Chen, C. (1999). The sound of music: Constructing science as sociocultural practices through oral written discourse. Journal of Research in Science Teaching, 36, 883–915.

    Article  Google Scholar 

  • Kelly, G. J., Druker, S., & Chen, C. (1998). Students’ reasoning about electricity: Combining performance assessments with argumentation analysis. International Journal of Science Education, 20(7), 849–871.

    Article  Google Scholar 

  • Kelly, G. J., & Takao, A. (2002). Epistemic levels in argument: An analysis of University Oceanography students’ use of evidence in writing. Science Education, 86(3), 314–342.

    Article  Google Scholar 

  • Koponen, I. T. (2007). Models and modelling in physics education: A critical re-analysis of philosophical underpinnings and suggestions for revisions. Science & Education, 16, 751–773.

    Article  Google Scholar 

  • Koslowski, B. (1996). Theory and evidence: The development of scientific reasoning. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science Education, 77(3), 219–337.

    Article  Google Scholar 

  • Kuhn, D. (2000). Metacognitive development. Current Directions in Psychological Science, 9(5), 178–181.

    Article  Google Scholar 

  • Kuhn, D. (2001). How do people know? Psychological Science, 12(1), 1–8.

    Article  Google Scholar 

  • Kuhn, D., & Dean, D. Jr. (2004). Metacognition: A bridge between cognitive psychology and educational practice. Theory into Practice, 43(4), 268–273.

    Article  Google Scholar 

  • Kuhn, D., & Franklin, S. (2006). The second decade: What develops (and How). In W. Damon, et al. (Eds.), Handbook of child psychology 2–Cognition, perception and language. Hoboken, New Jersey: Wiley.

    Google Scholar 

  • Kuhn, D., & Pearsall, S. (1998). Relations between Metastrategic knowledge and strategic claims. Cognitive Development, 13, 227–247.

    Article  Google Scholar 

  • Kuhn, D., Shaw, V., & Felton, M. (1997). Effects of dyadic interaction on argumentative reasoning. Cognition and Instruction, 15(3), 287–315.

    Article  Google Scholar 

  • Kuhn, D., & Udell, W. (2003). The development of argument skills. Child Development, 74(5), 1245–1260.

    Article  Google Scholar 

  • Kuhn, D., & Udell, W. (2007). Coordinating own and other perspectives in argument. Thinking & Reasoning, 13(2), 90–104.

    Article  Google Scholar 

  • Kuhn, D. (1991). The skills of argument. Cambridge (et al.): Cambridge University Press.

    Google Scholar 

  • Kuhn, D. (2005). Education for thinking. Cambridge (et al.): Harvard University Press.

    Google Scholar 

  • Lawson, A. (2003). The nature and development of hypothetico-predictive argumentation with implications for science teaching. International Journal of Science Education, 25(11), 1387–1408.

    Article  Google Scholar 

  • Matthews, M. R. (1997). Introductory comments on philosophy and constructivism in science education. Science & Education, 6, 5–14.

    Article  Google Scholar 

  • Matthews, M. R. (2007). Models in science and in science education: An introduction. Science & Education, 16, 647–652.

    Article  Google Scholar 

  • Meisert, A. (2008). Vom Modellwissen zum Modellverständnis–Elemente einer umfassenden Modellkompetenz und deren Fundierung durch lernerseitige Kriterien zur Klassifikation von Modellen. ZfDN, 243–261.

  • Metzinger, T. (2003). Being no one: The self-model theory of subjectivity. Cambridge (et al.): MIT Press.

    Google Scholar 

  • Nersessian, N. J. (2002). The cognitive basis of model-based reasoning in science. In P. Carruthers, S. Stich, & M. Siegal (Eds.), The cognitive basis of science. Cambridge: Cambridge University Press.

    Google Scholar 

  • Nersessian, N. J. (2008a). Creating scientific concepts. Cambridge (et al.): MIT Press.

    Google Scholar 

  • Nersessian, N. J. (2008b). Mental modelling in conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change. New York: Routledge.

    Google Scholar 

  • Núñez Oviedo, M. C. & Clement, J. (2003). Model competition: A strategy based on model based teaching and learning theory. Proceedings of NARST, Philadelphia, PA, March 23–26, http://www-unix.oit.umass.edu/~clement/pdf/model_competition.pdf (06–10–2010).

  • Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020.

    Article  Google Scholar 

  • Patronis, T. (1999). Students’ argumentation in decision-making on a socio-scientific issue: Implications for teaching. International Journal of Science Education, 21(7), 745–754.

    Article  Google Scholar 

  • Portides, D. P. (2007). The relation between idealisation and approximation in scientific model construction. Science & Education, 16, 699–724.

    Article  Google Scholar 

  • Rea-Ramirez, M. A., Clement, J., & Núñez-Oviedo, M. C. (2008). An instructional model derived from model construction and criticism theory. In J. J. Clement & M. A. Rea-Ramírez (Eds.), Model based learning and instruction in science. Dordrecht: Springer.

    Google Scholar 

  • Sadler, T. D., & Donelly, L. A. (2006). Socioscientific argumentation: The effects of content knowledge and morality. International Journal of Science Education, 28(12), 1463–1488.

    Article  Google Scholar 

  • Sadler, T. D., & Zeidler, D. L. (2005). Patterns of informal reasoning in the context of socioscientific decision making. Journal of Research in Science Teaching, 42(1), 112–138.

    Article  Google Scholar 

  • Sampson, V., & Clark, D. B. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92, 447–472.

    Article  Google Scholar 

  • Schaeken, W., Vandierendonck, A., Schroyens, W., & d’Ydewalle, G. (2007). The mental models theory of reasoning. Mahwah, New Jersey: Lawrence Erlbaum Associates.

    Google Scholar 

  • Seel, N. M. (2006). Mental models in learning situations. In C. Held, M. Knauff, & G. Vosgerau (Eds.), Mental models and the mind. Amsterdam (et al.): Elsevier.

    Google Scholar 

  • Silva, C. C. (2007). The role of models and analogies in the electromagnetic theory: A historical case study. Science & Education, 16, 835–848.

    Article  Google Scholar 

  • Simon, S., Erduran, S., & Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2–3), 235–260.

    Article  Google Scholar 

  • Suppe, F. (1989). The semantic conception of theories and scientific realism. Urbana and Chicago: University of Illinois Press.

    Google Scholar 

  • Suppe, F. (2000). Understanding scientific theories: An assessment of developments 1969–1998. Philosophy of Science, 67, 102–115.

    Article  Google Scholar 

  • Tamayo, A. O., & Sanmartí, N. (2007). High-school students’ conceptual evolution of the respiration concept from the perspective of Giere’s cognitive science model. International Journal of Science Education, 29(2), 215–248.

    Article  Google Scholar 

  • Toulmin, S. E. (1958). The uses of argument. Cambridge: Cambridge University Press.

    Google Scholar 

  • Toulmin, S. E. (2003). The uses of argument. Cambridge (et al.): Cambridge University Press.

    Google Scholar 

  • van Eemeren, F. H., & Grootendorst, R. (2004). A systematic theory of argumentation. The pragma-dialectical approach. Cambridge (et al.): Cambridge University Press.

    Google Scholar 

  • van Fraassen, B. (1980a). The scientific image. Oxford: Oxford University Press.

    Book  Google Scholar 

  • van Fraassen, B. (1980b). Theory construction and experiment: An empiricist view. Proceedings of the Philosophy of Science Association, 2, 663–677.

    Google Scholar 

  • von Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of How Students’ argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101–131.

    Article  Google Scholar 

  • Voss, J. F., & van Dyke, J. A. (2001). Argumentation in psychology: Background comments. Discourse Processes, 32(2&3), 89–111.

    Article  Google Scholar 

  • Walton, D. N. (1996). Argumentation schemes for presumptive reasoning. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35–62.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Hans Mühlenhoff Foundation (Osnabrück, Germany) and the FAZIT Foundation (Frankfurt on the Main, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Böttcher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böttcher, F., Meisert, A. Argumentation in Science Education: A Model-based Framework. Sci & Educ 20, 103–140 (2011). https://doi.org/10.1007/s11191-010-9304-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-010-9304-5

Keywords

Navigation