Skip to main content
Log in

Incommensurability and Multiple Models: Representations of the Structure of Matter in Undergraduate Chemistry Students

  • Original Paper
  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

The notion of incommensurability has provided a rationality criterion for the development of scientific theories, as well as some insight into theories developed by students while learning science. However, the relationship between the multiple models held by students and incommensurability requires further discussion. We present the results of empirical work that investigated the multiple models of the structure of the matter held by university students and we analyze these results using the notion of incommensurability. We also point out implications in the construction of students’ scientific models as they move forward in their careers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albanese A., Vicentini M. (1997). Why Do We Believe that an Atom is Colourless? Reflections about the Teaching of the Particle Model. Science & Education 6:251–261

    Article  Google Scholar 

  • Amsterdamski S. (1975). Between Experience and Metaphysics. Philosophical Problems of the Evolution of Science. Reidel Publishing Company, Dordrecht

    Google Scholar 

  • Andersson B. (1990). Pupils’ Conceptions of Matter and its Transformations (age 12–16). Studies in Science Education 18:53–85

    Google Scholar 

  • Bachelard G. (1988). La Formación del Espíritu Científico (The Formation of the Scientific Mind) (Fifteenth edition). Siglo XXI, México

    Google Scholar 

  • Bachelard G. (1984). La Filosofía del No. Ensayo de una filosofía del nuevo espíritu científico (The Philosophy of No: A Philosophy of the New Scientific Mind). Amorrortu, Buenos Aires

    Google Scholar 

  • Blazer W., Moulines U., Sneed J. (1987). An Architectonic for Science. The Structuralist Program. Reidel Publishing Company, Dordrecht

    Google Scholar 

  • Brown H.I. (2005). Incommensurability Reconsidered. Studies in History and Philosophy of Science 36:149–169

    Article  Google Scholar 

  • Bodner G.M. (1991). I have found you an argument. The Conceptual Knowledge of Beginning Chemistry Graduate Students. Journal of Chemical Education 68(5):385–388

    Google Scholar 

  • Carey, S.: 1992, ‘The Origin and Evolution of Everyday Concepts’, in: R. Giere (ed.), Cognitive Models of Science. Minnesota Studies in the Philosophy of Science XV, 89–128

  • Carrier M. (2002a). Shifting Symbolic Structures and Changing Theories: On the Non–translatability and Empirical Comparability of Incommensurable Theories. In: Ferrari and Stamtescu (eds). Symbol and Physical Knowledge: On the Conceptual Structure of Physics. Springer, Berlin, pp. 126–148

    Google Scholar 

  • Carrier M. (2002b) Changing Laws and Shifting Concepts: On the Nature and Impact of Incommensurability. In: Hoyningen-Huene P., Sankey H. (eds). Incommensurability and Related Matters, Boston Studies in the Philosophy of Science, No 216. Kluwer Academic Publishers, Dordrecht, pp. 65–90

    Google Scholar 

  • Chi M.T.H., Roscoe R.D. (2002) The Processes and Challenges of Conceptual Change. In: Limón M., Mason L. (eds). Reconsidering Conceptual Change. Issues in Theory and Practice. Kluwer Academic Publishers, Dordrecht, pp. 3–28

    Chapter  Google Scholar 

  • Chinn C., Brewer W. (1993). The Role of Anomalous Data in Knowledge Acquisition: A Theoretical Framework and Implications for Science Instruction. Review of Educational Research 63(1):1–49

    Article  Google Scholar 

  • De Posada J.M. (1997). Conceptions of High School Students Concerning the Internal Structure of Metals and their Electric Conductions: Structure and Evolution. Science Education 81:445–467

    Article  Google Scholar 

  • Duschl R., Gitomer D. (1991). Epistemological Perspectives on Conceptual Change: Implications for Educational Practice. Journal of Research in Science Teaching 28(9):839–858

    Article  Google Scholar 

  • Ebenezer J.V., Erickson G.L. (1996). Chemistry Students’ Conceptions of Solubility: A phenomenography. Science Education 80(2):181–201

    Article  Google Scholar 

  • Eilam B. (2004). Drops of Water and of Soap Solution: Students’ Constraining Mental Models of the Nature of Matter. Journal of Research in Science Teaching 41(10):970–993

    Article  Google Scholar 

  • Erduran S., Duschl R. (2004). Interdisciplinary Characterizations of Models and the Nature of Chemical Knowledge in the Classroom. Studies in Science Education 40:105–138

    Google Scholar 

  • Flores F., Gallegos L. (1999). Construcción de Conceptos Físicos en Estudiantes. La Influencia del Contexto (Students Construction of Physical Concepts. The Influence of Context). Perfiles Educativos 21(85–86):90–103

    Google Scholar 

  • Flores, F. et al.: 2002, ‘Ideas Previas (Previous Ideas)’. Retrieved April 3, 2006, from  <http://www.ideasprevias.cinstrum.unam.mx:2048>

  • Gabel D., Samuel K.V., Hunn D. (1987). Understanding the Particulate Nature of Matter. Journal of Chemical Education 64(8):695–697

    Google Scholar 

  • Gallegos, L.: 2002, Comparación entre la Evolución de los Conceptos Históricos y las Ideas de los Estudiantes: El Modelo de la Estructura de la Materia (Comparison between the Historic Evolution of Concepts and Students’ Ideas. The Structure of Matter Model), Doctoral thesis, Universidad Nacional Autónoma de México, México

  • Garnett P.J., Garnett P.J., Hackling M.W. (1995). Students’ Alternative Conceptions in Chemistry: A Review of Research and Implications for Teaching and Learning. Studies in Science Education 25:69–95

    Google Scholar 

  • Gilbert J., Boulter C. (1998). Learning Science Through Models and Modeling. In: Fraser B., Tobin K. (eds). International Handbook of Science Education. Kluwer Academic Publishers, Dordrecht, pp. 53–66

    Google Scholar 

  • Grosslight K., Unger C., Jay E, Smith C. (1991). Understanding Models and their Use in Science: Conceptions of Middle and High School Students and Experts. Journal of research in Science Teaching 29:799–822

    Article  Google Scholar 

  • Haidar A., Abraham M. (1991). A Comparison of Applied and Theoretical Knowledge of Concepts Based on the Particulate Nature of Matter. Journal of Research in Science Teaching 28(10):919–938

    Google Scholar 

  • Harrison A.G., Treagust D.F. (2002). The Particulate Nature of Matter: Challenges in Understanding the Submicroscopic World. In: Gilbert J., De Jong O., Justi R., Treagust D.F., Van Driel J. (eds). Chemical Education: Towards Research-based Practice. Kluwer Academic Publishers, Dordrecht, pp. 189–212

    Google Scholar 

  • Hernández M.C., Ruiz R. (2000). Kuhn y el Aprendizaje del Evolucionismo Biológico (Kuhn and Learning of Biological Evolutionism). Perfiles educativos 22(89–90):92–114

    Google Scholar 

  • Hoyningen-Huene P. (1993). Reconstructing Scientific Revolutions: Thomas Kuhn’s Philosophy of Science. Chicago University Press, Chicago

    Google Scholar 

  • Irzik G., Grünberg T. (1998). Whorfian Variations of Kantian Themes: Kuhn’s Linguistic Turn. Studies in History and Philosophy of Science 29(2):207–221

    Article  Google Scholar 

  • Ivarsson J., Schoultz J., Säljö R. (2002). Map Reading versus Mind Reading: Revisiting Children’s Understanding of the Shape of the Earth. In: Limón M., Mason L. (eds). Reconsidering Conceptual Change: Issues in Theory and Practice. Kluwer Academic Publishers, Dordrecht, pp. 77–100

    Chapter  Google Scholar 

  • Jensen W.B. (1998a). Logic, History, and the Chemistry Textbook. Part I. Does Chemistry have a Logical Structure? Journal of Chemical Education 75(6):679–687

    Google Scholar 

  • Jensen W.B. (1998b). Logic, History, and the Chemistry Textbook. Part II. Can we Unmuddle the Chemistry Textbook? Journal of Chemical Education 75(7):817–828

    Google Scholar 

  • Jensen W.B. (1998c). Logic, History, and the Chemistry Textbook. Part III. One Chemical Revolution or Three?. Journal of Chemical Education 75(8):961–969

    Article  Google Scholar 

  • Johansson B., Marton F., Svensson L. (1985). An Approach to Describing Learning as Change between Qualitative Different Conceptions. In: West L.H.T., Pines A.L. (eds). Cognitive Structure and Conceptual Change. Academic Press, Florida, pp. 233–257

    Google Scholar 

  • Kuhn T.S. (1970). The Structure of Scientific Revolutions. The University of Chicago Press, Chicago

    Google Scholar 

  • Kuhn, T.S.: 1983, ‘Commensurability, Comparability, Communicability?’, in P.D. Asquith and T. Nickles (eds.), PSA 1982. East Leasing: Philosophy of Science Association, Vol. 2, pp. 669–688

  • Lakatos I. (1970). Falsification and the Methodology of Scientific Research Programmes. In: Lakatos I., Musgrave A. (eds). Criticism and the Growth of Knowledge: Proceedings of the International Colloquium in the Philosophy of Science 1965. Cambridge University Press, Cambridge, pp. 91–196

    Google Scholar 

  • Laudan L. (1997). Progress and it’s Problems: Toward a Theory of Scientific Growth. University of California Press, Berkeley

    Google Scholar 

  • Mortimer E.F. (1998). Multivoicedness and Univocality in the Classroom Discourse: An Example from Theory of Matter. International Journal of Science Education 29(1):67–82

    Google Scholar 

  • Mortimer E. (1995). Conceptual Change or Conceptual Profile Change?. Science & Education 4:267–285

    Article  Google Scholar 

  • Novick S., Nussbaum J. (1978). Junior High School Pupils’ Understanding of the Particulate Nature of Matter: An Interview Study. Science Education 62(3):273–281

    Article  Google Scholar 

  • Pfundt, H. & Duit, R.: 2006, ‘Bibliography. Students’ and Teachers’ Conceptions and Science Education’, Retrieved on April, 3, 2006 from  <http://www.ipn.uni-kiel.de/aktuell/stcse/stcse.html>

  • Pérez-Ransanz A.R. (1999). Kuhn y el Cambio Científico (Kuhn and Scientific Change). Fondo de Cultura Económica, México

    Google Scholar 

  • Popper K. (1970). Normal Science and its Danger. In: Lakatos I., Musgrave A. (eds). Criticism and the Growth of Knowledge: Proceedings of the International Colloquium in the Philosophy of Science 1965. Cambridge University Press, Cambridge, pp. 51–58

    Google Scholar 

  • Posner G., Strike K, Hewson P., Gertzog W. (1982). Accommodation of a Scientific Conception: Toward a Theory of Conceptual Change. Science Education 66(2):211–227

    Article  Google Scholar 

  • Siegel H. (2001). Incommensurability, Rationality and Relativism in Science Culture and Science Education. In: Hoyningen-Huene P., Sankey H. (eds). Incommensurability and Related Matters Boston. Studies in the Philosophy of Science No. 216. Kluwer Academic Publishers, Dordrecht, pp. 207–224

    Google Scholar 

  • Stavy R. (1995). Conceptual Development of Basic Ideas in Chemistry. In: Glynn S., Duit R. (eds). Learning Science in the Schools: Research Reforming Practice. Lawrence Erlbaum, Hillsdale, pp. 131–154

    Google Scholar 

  • Taber K. (2001). Shifting Sands: A Case Study of Conceptual Development as Competition between Alternative Conceptions. International Journal of Science Education 23(7):731–753

    Article  Google Scholar 

  • Van Berkel B., De Vos W., Verdonk A.H., Pilot A. (2000). Normal Science Education and its Dangers: The Case of School Chemistry. Science & Education 9:123–159

    Article  Google Scholar 

  • Vosniadou S. (1994). Capturing and Modelling the Process of Conceptual Change. Learning and Instruction 4(1):45–69

    Article  Google Scholar 

  • Vosniadou S. (2002). On the Nature of Naïve Physics. In: Limón M., Mason L. (eds). Reconsidering Conceptual Change: Issues in theory and practice. Kluwer Academic Publishers, Dordrecht, pp. 61–70

    Chapter  Google Scholar 

  • Wang X. (2002). Taxonomy, Truth-value Gaps and Incommensurability: A Reconstruction of Kuhn’s Taxonomic Interpretation of Incommensurability. Studies in History and Philosophy of Science 33:465–485

    Article  Google Scholar 

  • Webster’s Third New International Dictionary: 1971, Encyclopaedia Britannica Inc., Chicago

Download references

Acknowledgments

We acknowledge the valuable English revision and comments of Dr. Neil Bruce.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Flores-Camacho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flores-Camacho, F., Gallegos-Cázares, L., Garritz, A. et al. Incommensurability and Multiple Models: Representations of the Structure of Matter in Undergraduate Chemistry Students. Sci & Educ 16, 775–800 (2007). https://doi.org/10.1007/s11191-006-9049-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-006-9049-3

Keywords

Navigation