Skip to main content
Log in

Effect of the TiO2 shell thickness on the photocatalytic activity with ZnO/TiO2 core/shell nanorod microspheres

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

TiO2 shell has been fabricated directly on the surface ZnO nanorod microspheres by thermal decomposition of tetrabutyl titanate in octadecane. The thickness of the coverage with TiO2 was controlled by the amount of tetrabutyl titanate added. The core/shell nanorods have anatase TiO2 shells after annealed at 873 K in air. This method enables us to tailor the thickness of TiO2 shell for desired photooxidation application in phenol degradation. ZnO nanorods showed a relatively low efficiency in the photooxidation reaction of phenol. After coating atanase TiO2, the photocatalytic activity of the ZnO/TiO2 core/shell nanocomposites was significantly enhanced in photocatalytic degradation of phenol. It was also found that the thickness of the TiO2 shell affected the catalytic efficiency of ZnO/TiO2 core/shell nanorod microspheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.M. Zhang, X. Quan, S. Chen, H.M. Zhao, Appl. Phys. A 89, 679–763 (2007)

    Google Scholar 

  2. Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, J. Am. Chem. Soc. 124, 12954–12955 (2002)

    Google Scholar 

  3. T.J. Hsueh, S.J. Chang, Y.R. Lin, S.Y. Tsai, I.C. Chen, C.L. Hsu, Cryst. Growth Des. 6, 1282–1284 (2006)

    Article  CAS  Google Scholar 

  4. R.B. Peterson, C.L. Fields, B.A. Gregg, Langmuir 20, 5114–5118 (2004)

    Article  CAS  Google Scholar 

  5. Y.R. Lin, Y.K. Tseng, S.S. Yang, S.T. Wu, C.L. Hsu, S.J. Chang, Cryst. Growth Des. 5, 579–583 (2005)

    Article  CAS  Google Scholar 

  6. H. Yu, Z. Zhang, M. Han, X. Hao, F. Zhu, J. Am. Chem. Soc. 127, 2378–2379 (2005)

    Article  CAS  Google Scholar 

  7. V. Krishnakumar, K.M. Kumar, B.K. Mandal, F.R.N. Khan, Res. Chem. Intermed. 38, 1881–1892 (2012)

    Google Scholar 

  8. F. Xu, D. Guo, H. Han, H. Wang, Z. Gao, D. Wu, K. Jiang, Res. Chem. Intermed. 38, 1579–1589 (2012)

    Google Scholar 

  9. J. Hwang, B. Min, J.S. Lee, K. Keem, K. Cho, M.Y. Sung, M.S. Lee, S. Kim, Adv. Mater. 16, 422–425 (2004)

    Article  CAS  Google Scholar 

  10. M. Law, L.E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, P. Yang, J. Phys. Chem. B 110, 22652–22663 (2006)

    Article  CAS  Google Scholar 

  11. Q. Zhang, W. Fan, L. Gao, Appl. Catal. B 76, 168–173 (2007)

    Article  CAS  Google Scholar 

  12. W. Wu, Y.W. Cai, J.F. Chen, S.L. Shen, A. Martin, L.X. Wen, J. Mater. Sci. 41, 5845–5850 (2006)

    Article  CAS  Google Scholar 

  13. M. Mo, T. Ma, L. Jia, L. Peng, X. Guo, W. Ding, Mater. Lett. 63, 2233–2235 (2009)

    Article  CAS  Google Scholar 

  14. M.N. Rashed, A.A. El-Amin, Int. J. Phys. Sci. 2, 073–081 (2007)

    Google Scholar 

  15. L.A. Ghule, A.A. Patil, K.B. Sapnar, Toxicol. Environ. Chem. 93, 623–624 (2011)

    Article  CAS  Google Scholar 

  16. A. Sartori, F. Visentin, N. El Habra, Cryst. Res. Technol. 46, 885–890 (2011)

    Article  CAS  Google Scholar 

  17. M.H. Liao, C.H. Hsu, D.H. Chen, J. Solid State Chem. 179, 2020–2026 (2006)

    Article  CAS  Google Scholar 

  18. A. Irannejad, K. Janghorban, O.K. Tan, H. Huang, Electrochim. Acta 58, 19–24 (2011)

    Article  CAS  Google Scholar 

  19. X. Zhou, S. Chen, D. Zhang, Langmuir 22, 1383–1387 (2006)

    Article  CAS  Google Scholar 

  20. C. Zou, X. Yan, J. Han, R. Chen, J. Metson, B. Cowie, L.T.A. Tadich, W. Gao, in The 10th International Conference on Synchrotron Radiation Instrumentation, 2010, pp. 247–250

Download references

Acknowledgments

This work was supported by the Research Foundation of Education Bureau of Hunan Province (11B027) and the Planned Science and Technology Project of Hunan Province (2011FJ3248, 2011FJ3125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Mo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mo, M., Tang, J., Zheng, M. et al. Effect of the TiO2 shell thickness on the photocatalytic activity with ZnO/TiO2 core/shell nanorod microspheres. Res Chem Intermed 39, 3981–3989 (2013). https://doi.org/10.1007/s11164-012-0913-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0913-2

Keywords

Navigation