Skip to main content
Log in

Effects of NH +4 and Cl on the preparation of nanocrystalline TiO2 by hydrothermal method

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Nanocrystalline TiO2 powders with different morphologies and grain sizes were successfully synthesized by the hydrothermal method. Different concentrations of hydrochloric acid (HCl), ammonium chloride (NH4Cl), ammonium sulfate [(NH4)2SO4], and ammonium carbonate [(NH4)2CO3] were used as additives in the hydrothermal process to investigate the effect of the concentration of ammonium (NH +4 ) and chloride ions (Cl) on the phase compositions, morphologies, and grain sizes of the prepared TiO2. The as-synthesized samples were characterized by X-ray diffraction (XRD), transmission electron microscopy, Brunauer–Emmett–Teller analysis, and UV–Vis spectra. XRD results show that the as-synthesized powders are composed of anatase or a mixture of anatase and brookite. The grain size of the synthesized nano-TiO2 powder ranged from 5.0 to 11.3 nm, and the related BET specific surface area varied from 127.5 to 191.0 m2/g. The photocatalytic activities of the prepared TiO2 powders were evaluated by degradation of methylene blue (MB) in aqueous solution under UV light irradiation, and the results show that the photocatalytic performance of TiO2 powders synthesized with additives is improved compared with that of TiO2 prepared without any additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Anpo, P.V. Kamat, Springer Science + Business Media (LLC, New York, 2010), p. 3

    Google Scholar 

  2. M. Kitano, M. Matsuoka, M. Ueshima, et al., Appl. Catal. A Gen. 325, 1 (2007)

    Google Scholar 

  3. A. Fujishima, T.N. Rao, D.A. Tryk, Photochem. Photobiol. C Photochem. Rev. 1, 1 (2000)

    Google Scholar 

  4. K. Hashimoto, H. Irie, A. Fujishima, Jpn. J. Appl. Phys. 44(12), 8269 (2005)

    Article  CAS  Google Scholar 

  5. D.V. Bavykin, V.P. Dubovitskaya, A.V. Vorontsov, et al., Res. Chem. Intermed. 33(3–5), 449 (2007)

    Google Scholar 

  6. K.A. Malinger, A.Maguer, A.Thorel, et al., Chem. Eng. J. 174, 445 (2011)

  7. J. Marugán, P. Christensen, T. Egerton, et al., Appl. Catal. B Environ. 89, 273 (2009)

    Google Scholar 

  8. J. Yu, W. Wang, B. Cheng, B.-L. Su, J. Phys. Chem. C Vol. 113, 6743 (2009)

    Article  CAS  Google Scholar 

  9. R.K. Wahi, Y. Liu, J.C. Falkner, V.L. Colvin, J. Colloid Interface Sci. 302, 530 (2006)

    Article  CAS  Google Scholar 

  10. Y.V. Koleńko, B.R. Churagulov, M. Kunst, L. Mazerolles, C. Colbeau-Justin, Appl. Catal. B Environ. vol. 54 (2004), p. 51

  11. K. Byrappa, M. Yoshimura, William Andrew, New York, (2001), p. 172

  12. H. Zhang, J.F. Banfield, J. Phys. Chem. B 104, 3481 (2000)

    Article  CAS  Google Scholar 

  13. Y. Zheng, E. Shi, S. Cui, W. Li, X. Hu, Sci. Lett. 19, 1445 (2000)

    Article  Google Scholar 

  14. A.L. Linsebigler, G.Q. Lu, J.T. Yates Jr, Chem. Rev. 95, 735 (1995)

    Article  CAS  Google Scholar 

  15. S. Bakardjieva, et al., Appl. Catal. B Environ. 58, 201 (2005)

    Google Scholar 

  16. P. Comba, Andre’ Merbach: Inorg. Chem. 26, 1318 (1987)

    Google Scholar 

  17. Y. Zheng, S. Erwei, L. Wenjun, et al., Sci. China Series E Technol. Sci. 45(3), 273 (2002)

    Google Scholar 

  18. N. Murakami, Y. Kurihara, T. Tsubota, T. Ohno, J. Phys. Chem. C 113, 3062 (2009)

    Article  CAS  Google Scholar 

  19. M. Peter, G.W. Watson, E.T. Kelsey, S.C. Parker, J. Mater. Chem. 7, 563 (1997)

    Article  Google Scholar 

  20. H. Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater. 7, 663 (1995)

    Article  CAS  Google Scholar 

  21. H. Yin, Y. Wada, T. Kitamura, et al., J. Mater. Chem. 11, 1694 (2001)

  22. M.A.K. Ahmed, H. Fjellvåg, A. Kjekshus, Acta Chem. Scand. 50, 275 (1996)

    Article  CAS  Google Scholar 

  23. K. Yanagisawa, J. Ovenstone, J. Phys. Chem. B 103, 7781 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the National Natural Science Foundation of China (grant no. of 51072019), the National High Technology Research and Development Program of China (grant no. 2012AA030302), and the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure under grant SKL201112SIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Xu, J., Lin, S. et al. Effects of NH +4 and Cl on the preparation of nanocrystalline TiO2 by hydrothermal method. Res Chem Intermed 39, 1645–1654 (2013). https://doi.org/10.1007/s11164-012-0898-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0898-x

Keywords

Navigation