Skip to main content

Advertisement

Log in

Analyzing growth and change: latent variable growth curve modeling with an application to clinical trials

  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Objective

Typical methods of analyzing data from clinical trials have shortcomings, notably comparisons of group means, use of change scores from pre- and post-treatment assessments, ignoring intervening assessments, and focusing on direct effects of treatment. A comparison of group means disregards the likelihood that individuals have different trajectories of change. Moreover, change scores ignore intervening assessments that may provide useful information about change. This paper compares results from traditional regression-based methods for analyzing data from a clinical trial (e.g., regression with change scores) with those of latent growth curve modeling (LGM).

Methods

LGM is a method that uses structural equation modeling techniques to model individual change, assess treatment effects and the relationship among multiple outcomes simultaneously, and model measurement error. The consequence is more precise parameter estimates while using data from all available time points.

Results

Results demonstrate that LGM can yield stronger parameter estimates than the traditional regression-based approach and explain more variance in the outcome. In trials where there is a true effect, but it is non-significant or marginally significant using the traditional methods, LGM may provide evidence of this effect.

Conclusions

Analysts are encouraged to consider LGM as an additional and informative tool for analyzing clinical trial or other longitudinal data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cronbach, L. J., & Furby, L. (1970). How should we measure ‘change’ - or should we? Psychological Bulletin, 74, 68–80.

    Article  Google Scholar 

  2. Rogossa, D. R. (1988). Myths about longitudinal research. In K. W. Schaie, R. T. Campbell, W. Meredith, & S. C. Rawlings (Eds.), Methodological issues in aging research (pp. 171–209). New York: Springer.

    Google Scholar 

  3. Rogossa, D. R. (1995). Myths and methods ‘Myths about longitudinal research’ plus supplemental questions. In J. M. Gottman (Ed.), The analysis of change (pp. 3–66). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  4. Duncan T. E., & Duncan, S. C., et al. (2006). An introduction to latent variable growth curve modeling, (2nd ed.). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  5. Kreft, I., & De Leeuw, J. (1998). Introducing multilevel modeling. Thousand Oaks, CA: Sage.

    Google Scholar 

  6. Heck R., & Thomas, L. (2000). An introduction to multilevel modeling techniques. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  7. Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models. Applications and data analysis methods. Thousand Oaks, CA: Sage.

    Google Scholar 

  8. Chou, C. P., & Bentler, P. M., et al. (1998). Comparisons of two statistical approaches to the study of growth curves: The multilevel model and latent curve analysis. Structural Equation Modeling, 5, 247–266.

    Article  Google Scholar 

  9. Li, F., & Duncan, T. E., et al. (2000). A didactic example of latent curve analysis applicable to the study of aging. Journal of Aging and Health, 12, 388–425.

    Article  Google Scholar 

  10. McArdle, J. J., & Bell, R. Q. (2000). Recent trends in modeling longitudinal data by latent growth curve methods. In T. D. Little, K. U. Schnabel, & J. Baumert (Eds.), Modeling longitudinal and multiple-group data: Practical issues, applied approaches, and scientific examples (pp. 69–108). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  11. Muthen, B. O. (2002). Beyond SEM: General latent variable modeling. Behaviormetrika, 29, 81–117.

    Article  Google Scholar 

  12. Curren, P. J., & Willoughby, M. T. (2003). Implications of latent trajectory models for the study of developmental psychopathology. Development and Psychopathology, 15, 581–612.

    Article  Google Scholar 

  13. Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and event occurrence. New York: Oxford University Press.

    Google Scholar 

  14. Bollen, K. A., & Curren, P. J. (2004). Autoregressive Latent Trajectory (ALT) models: A synthesis of two traditions. Sociological Methods and Research, 32, 336–383.

    Article  Google Scholar 

  15. Tomarken, A. J., & Waller, N. G. (2005). Structural equation modeling: Strengths, limitations, and misconceptions. Annual Review of Clinical Psychology, 1, 2.1–2.35.

    Article  Google Scholar 

  16. McArdle, J. J., & Epstein, D. (1988). Dynamic but structural equation modeling of repeated measures data. In R. B. Cattell & J. Nesselroade (Eds.), Handbook of multivariate experimental psychology (pp. 561–614). New York: Plenum.

    Google Scholar 

  17. Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107–122.

    Article  Google Scholar 

  18. Rao, C. R. (1958). Some statistical methods for comparison of growth curves. Biometrics, 14, 1–17.

    Article  Google Scholar 

  19. Tucker, L. R. (1958). Determination of parameters of a functional relation by factor analysis. Psychometrika, 23, 19–23.

    Article  Google Scholar 

  20. Kline, R. B. (2005). Principles and practice of structural equation modeling, (2nd ed.). New York: Guilford.

    Google Scholar 

  21. Jackson, D. L. (2003). Revisiting sample size and number of parameter estimates: Some support for the N:q hypothesis. Structural Equation Modeling, 10, 128–141.

    Article  Google Scholar 

  22. Cudeck, R., & Henly, S. J. (1991). Model selection in covariance structures analysis and the “Problem” of sample size: A clarification. Psychological Bulletin, 109, 512–519.

    Article  PubMed  CAS  Google Scholar 

  23. MacCallum, R. C., & Browne, M. W., et al. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1, 131–149.

    Article  Google Scholar 

  24. Schumacker, R. E., & Lomax, R. G. (1996). A beginner’s guide to structural equation modeling. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  25. Kaplan, D. (2000). Structural equation modeling. Thousand Oaks, CA: Sage.

    Google Scholar 

  26. West, S. G., & Finch, J. F., et al. (1995). Structural equation models with nonnormal variables: Problems and remedies. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 56–75). Thousand Oaks, CA: Sage.

  27. Hox, J., & Bechger, T. (1998). An introduction to structural equation modeling. Family Science Review, 11, 354–373.

    Google Scholar 

  28. Chou, C. P., & Bentler, P. M. (1995). Estimates and tests in structural equation modeling. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 37–55). Thousand Oaks, CA: Sage.

    Google Scholar 

  29. SOLVD Investigators. (1990). Studies of left ventricular dysfunction (SOLVD)–rationale, design and methods: Two trials that evaluate the effect of enalapril in patients with reduced ejection fraction. The American Journal of Cardiology, 66, 315–322.

    Article  Google Scholar 

  30. SOLVD Investigators. (1991). Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The New England Journal of Medicine, 325, 293–302.

    Article  Google Scholar 

  31. Rogers, W. J., & Johnstone D. E., et al. (1994). Quality of life among 5,025 patients with left ventricular dysfunction randomized between placebo and Enalapril: The studies of left ventricular dysfunction. Journal of the American College of Cardiology, 23, 393–400.

    Article  PubMed  CAS  Google Scholar 

  32. Clarke, S. P., & Frasure-Smith, N., et al. (2000). Psychosocial factors as predictors of functional status at 1 year in patients with left ventricular dysfunction. Research in Nursing and Health, 23, 293–300.

    Google Scholar 

  33. Stull, D. E., & Clough, L. A., et al. (2001). Self-report quality of life as a predictor of hospitalization for patients with left ventricular dysfunction: A life course approach. Research in Nursing and Health, 24, 460–469.

    Article  PubMed  CAS  Google Scholar 

  34. Idler, E. L., & Benyamini, Y. (1997). Self-rated health and mortality: A review of twenty-seven community studies. Journal of Health and Social Behavior, 38, 21–37.

    Article  PubMed  CAS  Google Scholar 

  35. Kosloski, K., & Stull, D. E., et al. (2005). Longitudinal analysis of the reciprocal effects of self-assessed global health and depressive symptoms. The Journal of Gerontology B. Psychological Sciences and Social Sciences, 60(6), P296–P303.

    Google Scholar 

  36. Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136–162). Newbury Park, CA: Sage.

    Google Scholar 

  37. Marsh, H. W., & Hau, K. T., et al. (2004). In Search of Golden Rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Structural Equation Modeling, 11, 320–341.

    Article  Google Scholar 

  38. Bollen, K., & Curran, P. (2006). Latent curve models: A structural equation perspective. Hoboken, NJ: Wiley.

    Google Scholar 

  39. Duncan, T. E., & Duncan, S. C., et al. (2006). An introduction to latent variable growth curve modeling. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  40. Hu, L. T., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3, 424–453.

    Article  Google Scholar 

  41. Speer, D. C., & Greenbaum, P. D. (1995). Five methods for computing significant individual client change and improvement rates: Support for an individual growth curve approach. Journal of Consulting and Clinical Psychology, 63, 1044–1048.

    Article  PubMed  CAS  Google Scholar 

  42. Crosby, R. D., & Kolotkin, R. L., et al. (2003). Defining clinically meaningful change in health-related quality of life. Journal of Clinical Epidemiology, 56, 395–407.

    Article  PubMed  Google Scholar 

  43. Wothke, W. (2000). Longitudinal and multi-group modeling with missing data. In T. D. Little, K. U. Schnabel, & J. Baumert (Eds.), Modeling longitudinal and multilevel data: Practical issues, applied approaches, and specific examples. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  44. Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147–177.

    Article  PubMed  Google Scholar 

  45. Joreskog, K. G. (1993). Testing structural equation models. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 294–316). Newbury Park, CA: Sage.

    Google Scholar 

Download references

Acknowledgements

The author thanks Drs. Karl Kosloski and Kyle Kercher for their extremely helpful comments on earlier drafts of this manuscript, and the comments and suggestions of two anonymous reviewers that led to a more didactic and comparative paper. Two versions of summary data (means, variances, and covariances for listwise missing and full information maximum likelihood methods of estimation of missing data) can be downloaded from the Quality of Life Research Web site or upon request to the author. The summary matrices can be used to run the example analysis using Mplus. The names of the two files are “11136_2007_9290_MOESM1.dat” and “11136_2007_9290_MOESM2.dat”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald E. Stull.

Electronic supplementary material

Appendix: Mplus 4.2 syntax for evaluation of the model in Fig. 3

Appendix: Mplus 4.2 syntax for evaluation of the model in Fig. 3

figure a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stull, D.E. Analyzing growth and change: latent variable growth curve modeling with an application to clinical trials. Qual Life Res 17, 47–59 (2008). https://doi.org/10.1007/s11136-007-9290-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11136-007-9290-5

Keywords

Navigation