Skip to main content
Log in

A measure of non-Gaussianity for quantum states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a measure of non-Gaussianity for quantum states of a system of n oscillator modes. Our measure is based on the quasi-probability \({Q(\alpha),\alpha\in\mathcal{C}^n}\) . Since any measure of non-Gaussianity is necessarily an attempt at making a quantitative statement on the departure of the shape of the Q function from Gaussian, any good measure of non-Gaussianity should be invariant under transformations which do not alter the shape of the Q functions, namely displacements, passage through passive linear systems, and uniform scaling of all the phase space variables: Q(α) → λ2n Qα). Our measure which meets this ‘shape criterion’ is computed for a few families of states, and the results are contrasted with existing measures of non-Gaussianity. The shape criterion implies, in particular, that the non-Gaussianity of the photon-added thermal states should be independent of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang X.-B., Hiroshima T., Tomita A., Hayashi M.: Quantum information with Gaussian states. Phys. Rep. 448, 1 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  2. Braunstein S.L., van Loock P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 531 (2005)

    Article  ADS  Google Scholar 

  3. Adesso G., Illuminati F.: Entanglement in continuous-variable systems: recent advances and current perspectives. J. Phys. A Math. Theor. 40, 7821 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Simon R.: Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000)

    Article  ADS  Google Scholar 

  5. Simon R.: Separability criterion for Gaussian states. In: Braunstein, S.L., Pati, A.K. (eds) Quantum Information with Continuous Variables, Kluwer, Dordrecht (2001)

    Google Scholar 

  6. Simon R., Sudarshan E.C.G., Mukunda N.: Gaussian–Wigner distributions in quantum mechanics and optics. Phys. Rev. A 36, 3868 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  7. Furusawa A., Sorensen J., Braunstein S.L., Fuchs C.A., Kimble H.J., Polzik E.S.: Unconditional quantum teleportation. Science 282, 706 (1998)

    Article  ADS  Google Scholar 

  8. Bennett C., Brasasard G., Crepeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Solomon Ivan, J., Simon, R., Mukunda, N.: Generation of NPT entanglement from nonclassical photon statistics. quant-ph/0603255 (to be published in Quantum Inf. Process.)

  10. Asbóth J.K., Calsamiglia J., Ritsch H.: Computable measure of nonclassicality for light. Phys. Rev. Lett. 94, 173602 (2005)

    Article  ADS  Google Scholar 

  11. Klyshko D.N.: Observable signs of nonclassical light. Phys. Lett. A 213, 7 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Waks E., Diamanti E., Sanders B.C., Bartlett S.D., Yamamoto Y.: Direct observation of nonclassical photon statistics in parametric down-conversion. Phys. Rev. Lett. 92, 113602 (2004)

    Article  ADS  Google Scholar 

  13. Waks E., Sanders B.C., Diamanti E., Yamamoto Y.: Highly nonclassical photon statistics in parametric down-conversion. Phys. Rev. A 73, 033814 (2006)

    Article  ADS  Google Scholar 

  14. Simon, R., Selvadoray, M., Arvind, Mukunda, N.: Necessary and sufficient classicality conditions on photon number distributions. quant-ph/9709030

  15. Heersink J., Marquardt C., Dong R., Filip R., Lorenz S., Leuchs G., Andersen U.L.: Distillation of squeezing from non-Gaussian quantum states. Phys. Rev. Lett. 96, 253601 (2006)

    Article  ADS  Google Scholar 

  16. Mølmer K.: Non-Gaussian states from continuous-wave Gaussian light sources. Phys. Rev. A 73, 063804 (2006)

    Article  ADS  Google Scholar 

  17. Schack R., Schenzle A.: Moment hierarchies and cumulants in quantum optics. Phys. Rev. A 41, 3847 (1990)

    Article  ADS  Google Scholar 

  18. Tyc T., Korolkova N.: Highly non-Gaussian states created via cross-Kerr nonlinearity. New J. Phys. 10, 023041 (2008)

    Article  ADS  Google Scholar 

  19. Dell’ Anno F., De Siena S., Albano L., Illuminati F.: Continuous-variable quantum teleportation with non-Gaussian resources. Phys. Rev. A 76, 022301 (2007)

    Article  ADS  Google Scholar 

  20. Dell’ Anno F., De Siena S., Albano L., Illuminati F.: Continuous variable quantum teleportation with sculptured and noisy non-Gaussian resources. Eur. Phys. J. ST 160, 115 (2008)

    Google Scholar 

  21. Sabapathy K.K., Ivan J.S., Simon R.: Robustness of non-Gaussian entanglement against noisy amplifier and attenuator environments. Phys. Rev. Lett. 107, 130501 (2011)

    Article  ADS  Google Scholar 

  22. Genoni M.G., Paris M.G.A., Banaszek K.: Measure of the non-Gaussian character of a quantum state. Phys. Rev. A 76, 042327 (2007)

    Article  ADS  Google Scholar 

  23. Genoni M.G., Paris M.G.A., Banaszek K.: Quantifying the non-Gaussian character of a quantum state by quantum relative entropy. Phys. Rev. A 78, 060303 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  24. Solomon Ivan, J., Kumar, M.S., Simon, R.: A measure of non-Gaussianity for quantum states. arXiv:0812.2800. The contents of the present paper have been around in unpublished preprint form since 2008, and have influenced several authors. The new input since then has been our realization that scaling on the Q function is indeed a physical process [28]

  25. Kendall M.G., Stuart A.: The Advanced Theory of Statistics, vol. 1. Charles Griffin and Company Limited, London (1963)

    Google Scholar 

  26. Huber P.J.: Projection pursuit. Annal. Stat. 13(2), 435–475 (1985)

    Article  MATH  Google Scholar 

  27. Cahill K.E., Glauber R.J.: Ordered expansions in boson amplitude operators. Phys. Rev. 177, 1857 (1969)

    Article  ADS  Google Scholar 

  28. Solomon Ivan J., Sabapathy K.K., Simon R.: Operator-sum representation for bosonic Gaussian channels. Phys. Rev. A 84, 042311 (2011)

    Article  ADS  Google Scholar 

  29. Agarwal G.S., Chaturvedi S., Rai A.: Amplification of maximally-path-entangled number states. Phys. Rev. A 81, 043843 (2010)

    Article  ADS  Google Scholar 

  30. Wehrl A.: On the relation between classical and quantum-mechanical entropy. Rep. Math. Phys. 16, 353 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Cover T.M., Thomas J.A.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  32. Agarwal G.S., Tara K.: Nonclassical character of states exhibiting no squeezing or sub-Poissonian statistics. Phys. Rev. A 46, 485 (1992)

    Article  ADS  Google Scholar 

  33. Zavatta A., Parigi V., Bellini M.: Experimental nonclassicality of single-photon-added thermal light states. Phys. Rev. A 75, 052106 (2007)

    Article  ADS  Google Scholar 

  34. Parigi V., Zavatta A., Bellini M.: Manipulating thermal light states by the controlled addition and subtraction of single photons. Laser Phys. Lett. 5, 246 (2008)

    Article  ADS  Google Scholar 

  35. Parigi V., Zavatta A., Kim M.S., Bellini M.: Probing quantum commutation rules by addition and subtraction of single photons to/from a light field. Science 317, 1890 (2007)

    Article  ADS  Google Scholar 

  36. Kiesel T., Vogel W., Parigi V., Zavatta A., Bellini M.: Experimental determination of a nonclassical Glauber–Sudarshan P function. Phys. Rev. A 78, 021804 (R) (2008)

    Article  ADS  Google Scholar 

  37. Smith P.J.: A recursive formulation of the old problem of obtaining moments from cumulants and vice versa. Am. Stat. 49(2), 217–218 (1995)

    Article  ADS  Google Scholar 

  38. Shohat J.A., Tamarkin J.D.: The Problem of Moments. American Mathematical Society, Providence (1943)

    MATH  Google Scholar 

  39. Marcinkiewicz J.: Sur une propriété de la loi de Gauss. Math. Z. 44, 612 (1939)

    Article  MathSciNet  Google Scholar 

  40. Rajagopal A.K., Sudarshan E.C.G.: Some generalizations of the Marcinkiewicz theorem and its implications to certain approximation schemes in many-particle physics. Phys. Rev. A 10, 1852 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  41. Hudson R.L.: When is the wigner quasi-probability density non-negative?. Rep. Math. Phys. 6, 249 (1974)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Wehrl A.: General properties of entropy. Rev. Mod. Phys. 50, 221 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  43. Orłowski A.: Classical entropy of quantum states of light. Phys. Rev. A 48, 727 (1993)

    Article  ADS  Google Scholar 

  44. Mintert F., K. Życzkowski.: Wehrl entropy, Lieb conjecture, and entanglement monotones. Phys. Rev. A 69, 022317 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  45. Marchiolli M.A., Galetti D.: Generalized squeezing operators, bipartite Wigner functions and entanglement via Wehrl’s entropy functionals. Phys. Scr. 78, 045007 (2008)

    Article  ADS  Google Scholar 

  46. Lieb E.H.: Proof of an entropy conjecture of Wehrl. Commun. Math. Phys. 62, 35 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Simon R., Mukunda N., Dutta B.: Quantum-noise matrix for multimode systems: U(n) invariance, squeezing, and normal forms. Phys. Rev. A 49, 1567 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  48. Genoni M.G., Paris M.G.A.: Quantifying non-Gaussianity for quantum information. Phys. Rev. A 82, 052341 (2010)

    Article  ADS  Google Scholar 

  49. Man’ko O.V., Man’ko V.I., Marmo G., Sudarshan E.C.G., Zaccaria F.: Does the uncertainty relation determine the quantum state?. Phys. Lett. A 357, 255 (2006)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivan, J.S., Kumar, M.S. & Simon, R. A measure of non-Gaussianity for quantum states. Quantum Inf Process 11, 853–872 (2012). https://doi.org/10.1007/s11128-011-0314-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0314-2

Keywords

Navigation