Skip to main content
Log in

The interrelationship between the lower oxygen limit, chlorophyll fluorescence and the xanthophyll cycle in plants

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The lower oxygen limit (LOL) in plants may be identified through the measure of respiratory gases [i.e. the anaerobic compensation point (ACP) or the respiratory quotient breakpoint (RQB)], but recent work shows it may also be identified by a sudden rise in dark minimum fluorescence (F o). The interrelationship between aerobic respiration and fermentative metabolism, which occur in the mitochondria and cytosol, respectively, and fluorescence, which emanates from the chloroplasts, is not well documented in the literature. Using spinach (Spinacia oleracea), this study showed that Fo and photochemical quenching (q P) remained relatively unchanged until O2 levels dropped below the LOL. An over-reduction of the plastoquinone (PQ) pool is believed to increase F o under dark + anoxic conditions. It is proposed that excess cytosolic reductant due to inhibition of the mitochondria’s cytochrome oxidase under low-O2, may be the primary reductant source. The maximum fluorescence (F m) is largely unaffected by low-O2 in the dark, but was severely quenched, mirroring changes to the xanthophyll de-epoxidation state (DEPS), under even low-intensity light (≈4 μmol m−2 s−1). In low light, the low-O2-induced increase in F o was also quenched, likely by non-photochemical and photochemical means. The degree of quenching in the light was negatively correlated with the level of ethanol fermentation in the dark. A discussion detailing the possible roles of cyclic electron flow, the xanthophyll cycle, chlororespiration and a pathway we termed ‘chlorofermentation’ were used to interpret fluorescence phenomena of both spinach and apple (Malus domestica) over a range of atmospheric conditions under both dark and low-light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. This was comparable to a study by Watada et al. (1996) that found the LOL in spinach to be between 0.2 and 0.4 kPa O2, based on the RQB and the ACP, at 5°C.

References

  • Atiyeh HK, Babu BK, Wilkins MR, Huhnke RL (2009) Effect of the reducing agent dithiothreitol on ethanol and acetic acid production by clostridium strain P11 using simulated biomass-based syngas. Bioenerg Eng Conf BIO-097917

  • Avenson TJ, Cruz JA, Kramer DM (2004) Modulation of energy-dependent quenching of excitons in antennae of higher plants. Proc Natl Acad Sci USA 101:5530–5535

    Article  PubMed  CAS  Google Scholar 

  • Bennoun P (1982) Evidence for a respiratory chain in the chloroplast. Proc Natl Acad Sci USA 79:4352–4356

    Article  PubMed  CAS  Google Scholar 

  • Bennoun P (1994) Chlororespiration revisited: mitochondrial-plastid interactions in Chlamydomonas. Biochim Biophys Acta 1186:59–66

    Article  CAS  Google Scholar 

  • Bennoun P (2002) The present model for chlororespiration. Photosynth Res 73:273–277

    Article  PubMed  CAS  Google Scholar 

  • Boersig MR, Kader AA, Romani RJ (1988) Aerobic-anaerobic respiratory transition in pear fruit and cultured pear fruit cells. J Am Soc Hort Sci 113:869–873

    Google Scholar 

  • Burrows PA, Sazanov LA, Svab Z, Maliga P, Nixon PJ (1998) Identification of functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17:868–876

    Article  PubMed  CAS  Google Scholar 

  • Carol P, Kuntz M (2001) A plastid terminal oxidase comes to light: implications for carotenoid biosynthesis and chlororespiration. Trends Plant Sci 6:31–36

    Article  PubMed  CAS  Google Scholar 

  • Cournac L, Redding K, Ravenel J, Rumeau D, Josse E, Kuntz M, Peltier G (2000) Electron flow between photosystem II and oxygen in chloroplasts of photosystem I-deficient algae is mediated by a quinol oxidase involved in chlororespiration. J Biol Chem 275:17256–17262

    Article  PubMed  CAS  Google Scholar 

  • DeLong JM, Prange RK, Leyte JC, Harrison PA (2004) A new technology that determines low-oxygen thresholds in controlled-atmosphere-stored apples. HortTechnology 14:262–266

    Google Scholar 

  • Demmig-Adams B, Adams WW III (1996) The role of the xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW III, Heber U, Neimanis S, Winter K, Krüger A, Czygan F, Bilger W, Björkman O (1990) Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach leaves and chloroplasts. Plant Physiol 92:293–301

    Article  PubMed  CAS  Google Scholar 

  • Feild TS, Nedbal L, Ort DR (1998) Nonphotochemical reduction of the plastoquinone pool in sunflower leaves originates from chlororespiration. Plant Phys 116:1209–1218

    Article  CAS  Google Scholar 

  • Frank HA, Cua A, Chynwat V, Young A, Gosztola D, Wasielewski MR (1994) Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth Res 41:389–395

    Article  CAS  Google Scholar 

  • Gasser F, Eppler T, Naunheim W, Gabioud S, Höhn E (2008) Control of the critical oxygen level during dynamic CA storage of apples by monitoring respiration as well as chlorophyll fluorescence. Acta Hort 796:69–76

    CAS  Google Scholar 

  • Gasser F, Eppler T, Naunheim W, Gabioud S, Bozzi Nising A (2010) Dynamic CA storage of apples: monitoring of the critical oxygen concentration and adjustment of optimum conditions during oxygen reduction. Acta Hort 876:39–46

    CAS  Google Scholar 

  • Gilmore AM, Björkman O (1994) Adenine nucleotides and the xanthophyll cycle in leaves I. Effects of CO2- and temperature-limited photosynthesis on the adenylate energy charge and violaxanthin de-epoxidation. Planta 192:526–536

    Article  CAS  Google Scholar 

  • Gilmore AM, Hazlett TL, Govindjee (1995) Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: formation of a quenching complex with a short fluorescence lifetime. Proc Natl Acad Sci USA 92:2273–2277

    Article  PubMed  CAS  Google Scholar 

  • Gran CD, Beaudry RM (1993) Determination of the low oxygen limit for several commercial apple cultivars by respiratory quotient breakpoint. Postharvest Biol Technol 3:259–267

    Article  CAS  Google Scholar 

  • Hall DO, Rao KK (1999) Photosynthesis, 6th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Harris GC, Heber U (1993) Effect of anaerobiosis on chlorophyll fluorescence yield in spinach (Spinacia oleracea) leaf discs. Plant Physiol 101:1169–1173

    PubMed  CAS  Google Scholar 

  • Heldt H (2002) Three decades in transport business: studies of metabolite transport in chloroplasts—a personal perspective. Photosynth Res 73:265–272

    Article  PubMed  CAS  Google Scholar 

  • Hosler JP, Yocum CF (1987) Regulation of cyclic photophosphorylation during ferrodoxin-mediated electron transport. Plant Physiol 83:965–969

    Article  PubMed  CAS  Google Scholar 

  • Iturbe-Ormaetxe I, Escuredo PR, Arrese-Igor C, Becana M (1998) Oxidative damage in pea plants exposed to water deficit or paraquaot. Plant Physiol 116:173–181

    Article  CAS  Google Scholar 

  • Joët T, Genty B, Josse E, Kuntz M, Cournac L, Peltier G (2002) Involvement of a plastid terminal oxidase in plastoquinone oxidation as evidenced by expression of the Arabidopsis thaliana enxyme in tobacco. J Biol Chem 35:31623–31630

    Article  Google Scholar 

  • Johnson GN (2005) Cyclic electron transport in C3 plants: fact or artefact? J Exp Bot 56:407–416

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Steffen KL, Lee HJ (1998) Comparative photoinhibition of a high and low altitude ecotype of tomato (Lycopersicon hirsutum) to chilling stress under high and low light conditions. Plant Sci 134:69–77

    Article  CAS  Google Scholar 

  • Krause GH, Köster S, Wong SC (1985) Photoinhibition of photosynthesis under anaerobic conditions studies with leaves and chloroplasts of Spinacia oleracea L. Planta 165:430–438

    Article  CAS  Google Scholar 

  • Kwong SCW, Rao G (1992) Effect of reducing agents in an aerobic amino acid fermentation. Biotechnol Bioeng 40:851–857

    Article  PubMed  CAS  Google Scholar 

  • Livingston AK, Cruz JA, Kohzuma K, Dhingra A, Kramer DM (2010) An Arabidopsis mutant with high cyclic electron flow around photosystem I (hcef) involving the NADPH dehydrogenase complex. Plant Cell 22:221–233

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Deng Y, Mi H (2008) Redox of plastoquinone pool regulates the expression and activity of NADPH dehydrogenase supercomplex in Synechocystis sp. strain PCC 6803. Curr Microbiol 56:189–193

    Article  PubMed  CAS  Google Scholar 

  • Mi H, Endo T, Schreiber U (1994) NAD(P)H dehydrogenase-dependent cyclic electron flow around photosystem I in the cyanobacterium Synechocystis PCC 6803: a study of dark-starved cells and spheroplasts. Plant Cell Physiol 35:163–173

    CAS  Google Scholar 

  • Minitab Inc.® Release 15.1.1.0 (2007) State College

  • Miyake C, Miyata M, Shinzaki Y, Tomizawa K (2005) CO2 response of cyclic electron flow around PSI (CEP-PSI) in tobacco leaves–relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching of Chl fluorescence. Plant Cell Physiol 46:629–637

    Article  PubMed  CAS  Google Scholar 

  • Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371

    Article  PubMed  CAS  Google Scholar 

  • Mustroph A, Boamfa EI, Laarhoven LJJ, Harren FJM, Pörs Y, Grimm B (2006) Organ specific analysis of the anaerobic primary metabolism in rice and wheat seedlings II: light exposure reduces needs for fermentation and extends survival during anaerobiosis. Planta 225:139–152

    Article  PubMed  CAS  Google Scholar 

  • Nixon PJ (2000) Chlororespiration. Philos Trans R Soc Lond B 355:1541–1547

    Article  CAS  Google Scholar 

  • Okegawa Y, Kagawa Y, Kobayashi Y, Shikanai T (2008) Characterization of factors affecting the activity of photosystem I cyclic electron transport in chloroplasts. Plant Cell Physiol 49:825–834

    Article  PubMed  CAS  Google Scholar 

  • Peltier G, Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53:523–550

    Article  PubMed  CAS  Google Scholar 

  • Peppelenbos HW, Oosterhaven J (1998) A theoretical approach on the role of fermentation in harvested plant products. Acta Hort 464:381–386

    Google Scholar 

  • Pfündel E, Bilger W (1994) Regulation and possible function of the violaxanthin cycle. Photosynth Res 42:89–109

    Article  Google Scholar 

  • Prange RK, DeLong JM, Harrison PA (2003) Oxygen concentration affects chlorophyll fluorescence in chlorophyll-containing fruit and vegetables. J Am Soc Hortic Sci 128:603–607

    CAS  Google Scholar 

  • Prange RK, DeLong JM, Harrison PA (2005) Quality management through respiration control: is there a relationship between lowest acceptable respiration, chlorophyll fluorescence and cytoplasmic acidosis? Acta Hort 682:823–828

    CAS  Google Scholar 

  • Quiles MJ (2006) Stimulation of chlororespiration by heat and high light intensity in oat plants. Plant Cell Environ 29:1463–1470

    Article  PubMed  CAS  Google Scholar 

  • Rathnam CKM, Zilinskas BA (1977) Reversal of 3-(3, 4-diclorophenyl)-1, 1-dimethyylurea inhibition of carbon dioxide fixation in spinach chloroplasts and protoplasts by dicarboxylic acids. Plant Physiol 60:51–53

    Article  PubMed  CAS  Google Scholar 

  • Roberts JKM, Callis J, Wemmer D, Walbot V, Jardetzky O (1984) Mechanisms of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia. Proc Natl Acad Sci USA 8:3379–3383

    Article  Google Scholar 

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051

    Article  PubMed  CAS  Google Scholar 

  • SAS Release 8.0 (1999) Statistical analysis system. SAS institute, Cary

    Google Scholar 

  • Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis, vol 19. Springer, Dordrecht, pp 279–319

    Google Scholar 

  • SigmaPlot 11.0 (2008) Systat Software Inc. Chicago

  • Singh KK, Chen C, Gibbs M (1992) Characterization of an electron transport pathway associated with glucose and fructose respiration in intact chloroplasts of Chlamydomonas reinhardtii and spinach. Plant Physiol 100:327–333

    Article  PubMed  CAS  Google Scholar 

  • Thayer SS, Björkman O (1990) Leaf xanthophyll content and composition in sun and shade determined by HPLC. Photosynth Res 23:331–343

    Article  CAS  Google Scholar 

  • Tóth SZ, Schansker G, Strasser RJ (2007) A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. Photosynth Res 93:193–203

    Article  PubMed  Google Scholar 

  • van Dongen JT, Schurr U, Pfister M, Geigenberger P (2003) Phloem metabolism and function have to cope with low internal oxygen. Plant Physiol 131:1529–1543

    Article  PubMed  Google Scholar 

  • Watada AE, Schlimme DV, Bouwkamp JC (1996) Storage of spinach under low oxygen atmosphere above the extinction point. J Food Sci 61:398–401

    Article  Google Scholar 

  • Wright AH, DeLong JM, Franklin JL, Lada RR, Prange RK (2008) A new minimum fluorescence parameter, as generated using pulse frequency modulation (PFM), compared with pulse amplitude modulation (PAM): Fα versus Fo. Photosynth Res 97:205–214

    Article  PubMed  CAS  Google Scholar 

  • Wright AH, DeLong JM, Harrison PA, Gunawardena AHLAN, Prange RK (2010) The effect of temperature and other factors on chlorophyll a fluorescence and the lower oxygen limit in apples (Malus domestica). Postharvest Biol Technol 55:21–28

    Article  CAS  Google Scholar 

  • Yamamoto HY, Kamite L (1972) The effects of dithiothreitol on violaxanthin de-epoxidation and absorbance changes in the 500-nm region. Biochim Biophys Acta 267:538–543

    Article  PubMed  CAS  Google Scholar 

  • Yearsley CW, Banks NH, Ganesh S, Cleland DJ (1996) Determination of lower oxygen limits for apple fruit. Postharvest Biol Technol 8:95–109

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. David M. Kramer (Washington State University, WA, USA) and Dr. Douglas Campbell (Mount Allison University, NB, Canada) for reviewing this article. This is contribution no. 2377 of the Atlantic Food and Horticulture Research Centre, Agriculture and Agri-Food Canada. The authors would like to thank P. Harrison and C. Bishop for technical assistance. We gratefully acknowledge the Natural Sciences and Engineering Research Council (NSERC) of Canada for Canadian Graduate Studies doctoral funding (CGS D) for H. Wright.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Harrison Wright.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, A.H., DeLong, J.M., Gunawardena, A.H.L.A.N. et al. The interrelationship between the lower oxygen limit, chlorophyll fluorescence and the xanthophyll cycle in plants. Photosynth Res 107, 223–235 (2011). https://doi.org/10.1007/s11120-011-9621-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-011-9621-9

Keywords

Navigation