Skip to main content

Advertisement

Log in

Theory of excitation energy transfer: from structure to function

Photosynthesis Research Aims and scope Submit manuscript

Abstract

This mini-review summarizes our current theoretical knowledge about excitation energy transfer in pigment–protein complexes. The challenge for theory lies in the complexity of these systems and in the fact that the pigment–pigment and the pigment–protein interactions are of equal magnitude. The first part of this review contains an introduction to the theory of light harvesting and to structure-based calculations of the parameters of the theory. The second part provides a discussion of the standard Förster and Redfield theories of excitation energy transfer, which are valid in the limit of weak and strong pigment–pigment coupling, respectively. Afterward, we provide a description of recent extensions of the standard theories and discuss challenging problems to be solved in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. In the language of molecular physics, an exciton is simply an excited state that residues on different molecules during its lifetime.

  2. Any polarizability that is slow compared to the electronic transition has no time to react. Therefore, the static part of the dielectric constant has no influence on the excitonic coupling.

  3. In a recent report (Renger et al. 2009) a possible range of 1.82–2.04 was estimated for the optical dielectric constant ε = n 2 of pigment–protein complexes.

  4. Interestingly, the inclusion of vibrational sidebands, resonance energy transfer narrowing and lifetime broadening into the theory used for the fit of optical spectra resulted in very similar site energies (Adolphs and Renger 2006) as the earlier fit of Louwe et al. (1997), where these effects were neglected.

  5. The \(\hbar \omega\) in Eq. 6 is the energy of the quanta of the vibrational mode with frequency ω, and J(ω) is the spectral density introduced earlier.

  6. The subscripts α and I were introduced to distinguish the lineshape of absorbance from that of fluorescence, respectively.

  7. \(|c_m^{(M)}|^2\) describes the probability to find pigment m excited in the Mth exciton state of the complex.

  8. As shown by Renger and Marcus (2003).

  9. The maximum of the distribution of energy gaps between the exciton states in the case of homodimers was 150 cm−1 and for heterodimers it was 400 cm−1 (Renger et al. 2007). At the latter energy the one-quantum dissipation function \(\tilde{C}^{(\rm Re)}(\omega)\) entering the Redfield rate constant in Eq. 10 is already small (see Fig. 8) and multi-vibrational quanta dissipation becomes dominant.

  10. The dynamic localization of exciton states by the pigment–protein coupling, which occurs when pigments are coupled weakly, even if they have the same site energy, is implicitly described by allowing delocalization only within the domains.

Abbreviations

BChl:

Bacteriochlorophyll

Chl:

Chlorophyll

CDC:

Charge density coupling

FMO:

Fenna–Matthews–Olson

TrEsp:

Transition charge from electrostatic potential

TDDFT:

Time-Dependent Density Functional Theory

XC:

Exchange correlation

WSCP:

Water soluble chlorophyll protein

PSI:

Photosystem I

PSII:

Photosystem II

LHCII:

Light harvesting complex of photosystem II

LH1:

Core light harvesting complex of purple bacteria

LH2:

Peripheral light harvesting complex of purple bacteria

References

  • Abramavicius D, Voronine DV, Mukamel S (2008a) Double-quantum resonances and exciton-scattering in coherent 2D spectroscopy of photosynthetic complexes. Proc Natl Acad Sci USA 105:8525–8530

    Article  PubMed  Google Scholar 

  • Abramavicius D, Voronine DV, Mukamel S (2008b) Unravelling coherent dynamics and energy dissipation in photosynthetic complexes by 2D spectroscopy. Biophys J 94:3613–3619

    Article  PubMed  CAS  Google Scholar 

  • Adolphs J, Renger T (2006) How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Biophys J 91:2778–2797

    Article  PubMed  CAS  Google Scholar 

  • Adolphs J, Müh F, Madjet ME, Renger T (2008) Calculation of pigment transition energies in the FMO protein: from simplicity to complexity and back. Photosynth Res 95:197–209

    Article  PubMed  CAS  Google Scholar 

  • Brüggemann B, Sznee K, Novoderezhkin V, van Grondelle R, May V (2004) Modeling exciton dynamics in the photosynthetic antenna PS1. J Phys Chem B 108:13536–13546

    Google Scholar 

  • Cheng YC, Fleming GR (2009) Dynamics of light harvesting in photosynthesis. Annu Rev Phys Chem 60:241–262

    Article  PubMed  CAS  Google Scholar 

  • Cheng YC, Silbey RJ (2005) Markovian approximation in the relaxation of open quantum systems. J Phys Chem B 109:21399–21405

    Article  PubMed  CAS  Google Scholar 

  • Curutchet C, Scholdes GD, Mennucci B, Cammi R (2007) How solvent controls electronic energy transfer and light harvesting: toward a quantum-mechanical description of reaction field and screening effects. J Phys Chem B 111:13253–13265

    Article  PubMed  CAS  Google Scholar 

  • Damjanovic A, Kosztin I, Kleinekathöfer U, Schulten K (2002a) Excitons in a photosynthetic light-harvesting system: a combined molecular dynamics, quantum chemistry, and polaron model study. Phys Rev E 65:031919(1–24)

    Article  CAS  Google Scholar 

  • Damjanovic A, Vaswani HM, Fromme P, Fleming GR (2002b) Chlorophyll excitations in photosystem I of Synechococcus elongatus. J Phys Chem B 106:10251–10262

    Article  CAS  Google Scholar 

  • Davydov AS (1971) Theory of molecular excitons. Plenum Press, New York

    Google Scholar 

  • Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850

    Article  CAS  Google Scholar 

  • Fenna RE, Matthews BW (1975) Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola. Nature 258:573–577

    Article  CAS  Google Scholar 

  • Fetisova Z, Freiberg A, Mauring K, Novoderezhkin V, Taisova A, Timpmann K (1996) Excitation energy transfer in chlorosomes of green bacteria: theoretical and experimental studies. Biophys J 71:995–1010

    Article  PubMed  CAS  Google Scholar 

  • Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys Leipzig 2:55–75

    Article  Google Scholar 

  • Förster T (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Modern quantum chemistry. Part III. Action of light and organic crystals. Academic Press, New York, pp 93–137

    Google Scholar 

  • Frahmke JS, Walla PJ (2006) Coulombic couplings between pigments in the major light-harvesting complex LHC II calculated by the transition density cube method. Chem Phys Lett 430:397–403

    Article  CAS  Google Scholar 

  • Fromme P, Allen JP (2008) X-ray crystallography of photosynthetic proteins. In: Aartsma TJ, Matysik J (eds) Biophysical techniques in photosynthesis, Vol II. Springer, Dordrecht, The Netherlands, pp 97–124

    Chapter  Google Scholar 

  • Gerken U, Jelezko F, Götze B, Branschädel M, Tietz C, Ghosh R, Wrachtrup J (2003) Membrane environment reduces the accesible conformational space available to an integral membrane protein. J Phys Chem B 107:338–343

    Article  CAS  Google Scholar 

  • Gudowska-Nowak E, Newton MD, Fajer J (1990) Conformational and environmental effects on bacteriochlorophyll optical spectra: correlations of calculated spectra with structural results. J Phys Chem 94:5795–5801

    Article  CAS  Google Scholar 

  • Harcourt RD, Ghiggino KP, Scholes GD, Speiser S (1996) On the origin of matrix elements for electronic excitation (energy) transfer. J Chem Phys 105:1897–1901

    Google Scholar 

  • Jang S, Newton MD, Silbey RJ (2004) Multichromophoric Förster resonance energy transfer. Phys Rev Lett 92:218301

    Article  PubMed  CAS  Google Scholar 

  • Jang S, Newton MD, Silbey RJ (2007) Multichromophoric Förster resonance energy transfer from B800 to B850 in the light harvesting complex 2: evidence for subtle energetic optimization by purple bacteria. J Phys Chem B 111:6807–6814

    Article  PubMed  CAS  Google Scholar 

  • Jordanides XJ, Scholes GD, Fleming GR (2001) The mechanism of energy transfer in the bacterial photosynthetic reaction center. J Phys Chem B 105:1652–1669

    Article  CAS  Google Scholar 

  • Kjellberg P, Pullerits T (2006) Tree-pulse photon echo of an excitonic dimer modeled via Redfield theory. J Chem Phys 124:024106(1)–024106(9)

  • Kleima FJ, Hofmann E, Gobets B, van Stokkum IHM, van Grondelle R, Diederichs K, van Amerongen H (2000) Förster excitation energy transfer in peridinin-chlorophyll-a-protein. Biophys J 78:344–353

    Article  PubMed  CAS  Google Scholar 

  • Knox RS, Spring BQ (2003) Dipole strengths in the chlorophylls. Photochem Photobiol 77(5):497–501

    Article  PubMed  CAS  Google Scholar 

  • Krueger BP, Scholes GD, Fleming GR (1998) Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J Phys Chem B 102:5378–5386

    Article  CAS  Google Scholar 

  • Kühn O, Sundström (1997) Pump-probe spectroscopy of dissipative energy transfer dynamics in photosynthetic antenna complexes: a density matrix approach. J Chem Phys 107:4154–4164

    Article  Google Scholar 

  • Kühn O, Sundström V, Pullerits T (2002) Fluorescence depolarization dynamics in the B850 complex of purple bacteria. Chem Phys 275:15–30

    Article  Google Scholar 

  • Laio A, van de Vondele J, Rothlisberger U (2002) A Hamiltonian electrostatic coupling scheme for hybrid Car-Parrinello molecular dynamics simulations. J Chem Phys 116:6941–6947

    Article  CAS  Google Scholar 

  • Law CJ, Cogdell RJ (2008) The light-harvesting system of purple anoxygenic photosynthetic bacteria. In: Renger G (ed) Primary processes of photosynthesis—Part 1, principles and apparatus. RCS Publishing, Cambridge, pp 205–260

    Google Scholar 

  • Lax M (1952) The Franck-Condon principle and its application to crystals. J Chem Phys 20:1752–1760

    Article  CAS  Google Scholar 

  • Leegwater JA, Durrant JR, Klug DR (1997) Exciton equilibration induced by phonons: theory and application to PS II reaction centers. J Phys Chem B 101:7205–7210

    Article  CAS  Google Scholar 

  • Linke M, Lauer A, von Heimberger T, Zacarias A, Heyne K (2008) Three-dimensional orientation of the Qy transition dipole moment within the chlorophyll a molecule determined by femtosecond polarization resolved VIS pump–IR probe spectroscopy. J Am Chem Soc 130:14904–14905

    Article  PubMed  Google Scholar 

  • Louwe RJW, Vrieze J, Hoff AJ, Aartsma TJ (1997) Toward an integral interpretation of the optical steady-state spectra of the FMO-complex of Prosthecochloris aestuarii. 2. Exciton simulations. J Phys Chem B 101:11280–11287

    Article  CAS  Google Scholar 

  • Madjet ME, Abdurahman A, Renger T (2006) Intermolecular Coulomb couplings from ab initio electrostatic potentials: application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers. J Phys Chem B 110:17268–17281

    Article  PubMed  CAS  Google Scholar 

  • Madjet ME, Müh F, Renger T (2009) Deciphering the influence of short-range electronic couplings on optical properties of molecular dimers: application to ,,special pairs” in photosynthesis. J Phys Chem B (submitted)

  • Marcus RA (1963) Free energy of nonequilibrium polarization systems, vol 2. Homogeneous and electrode systems. J Chem Phys 38:1858–1862

    Article  CAS  Google Scholar 

  • May V, Kühn O (2000) Charge and energy transfer dynamics in molecular systems: a theoretical introduction. Wiley-VCH, Berlin

    Google Scholar 

  • Melkozernov AN, Olson JM, Li YF, Allen JP, Blankenship RE (1998) Orientation and excitonic interactions of the Fenna–Matthews–Olson bacteriochlorophyll a protein in membranes of the green sulfur bacterium Chlorobium tepidum. Photosynth Res 56:315–328

    Article  CAS  Google Scholar 

  • Müh F, Madjet ME, Adolphs J, Abdurahman A, Rabenstein B, Ishikita H, Knapp EW, Renger T (2007) α-helices direct excitation energy flow in the Fenna–Matthews–Olson protein. Proc Natl Acad Sci USA 104:16862–16867

    Article  PubMed  CAS  Google Scholar 

  • Mukai K, Abe S, Sumi H (1999) Theory of rapid excitation energy transfer from B800 to optically forbidden exciton states of B850 in the antenna system LH2 of photosynthetic purple bacteria. J Phys Chem B 103:6096–6102

    Article  CAS  Google Scholar 

  • Novoderezhkin VI, van Grondelle R (2002) Exciton-vibrational relaxation and transient absorption dynamics in LH1 of Rhodopseudomonas viridis: a redfield theory approach. J Phys Chem B 106:6025–6037

    Article  CAS  Google Scholar 

  • Novoderezhkin VI, Salverda JM, van Amerongen H, van Grondelle R (2003) Exciton modeling of energy-transfer dynamics in the LHCII complex of higher plants: a Redfield theory approach. J Phys Chem B 107:1893–1912

    Article  CAS  Google Scholar 

  • Novoderezhkin VI, Palacios MA, van Amerongen H, van Grondelle R (2005a) Excitation dynamics in the LHCII complex of higher plants: modeling based on the 2.72 Å crystal structure. J Phys Chem B 109:10493–10504

    Article  PubMed  CAS  Google Scholar 

  • Novoderezhkin VI, Palacios MA, van Amerongen H, van Grondelle R (2005b) Pathways and timescales of primary charge separation in the photosystem II reaction center as revealed by a simultaneous fit of time-resolved fluorescence and transient absorption. Biophys J 89:1464–1481

    Article  PubMed  CAS  Google Scholar 

  • Pieper J, Schödel R, Irrgang KD, Voigt J, Renger G (2001) Electron-phonon coupling in solubilized LHC II complexes of green plants investigated by line-narrowing and temperature-dependent fluorescence spectroscopy. J Phys Chem B 105:7115–7124

    Article  CAS  Google Scholar 

  • Pieper J, Irrgang KD, Renger G, Lechner RE (2004) Density of vibrational states of the light-harvesting complex II of green plants studied by inelastic neutron scattering. J Phys Chem B 108:10556–10565

    Article  CAS  Google Scholar 

  • Prokhorenko V, Holzwarth AR (2000) Primary processes and structure of the photosystem 2 reaction center: a photon echo study. J Phys Chem B 104:11563–11578

    Article  CAS  Google Scholar 

  • Rabenstein B, Knapp EW (2001) Calculated pH-dependent population and protonation of carbon-monoxy-myoglobin conformers. Biophys J 80:1141–1150

    Article  PubMed  CAS  Google Scholar 

  • Raszewski G, Renger T (2008) Light harvesting in photosystem II core complexes is limited by the transfer to the trap: can the core complex turn into a photoprotective mode? J Am Chem Soc 130:4431–4446

    Article  PubMed  CAS  Google Scholar 

  • Raszewski G, Saenger W, Renger T (2005) Theory of optical spectra of photosystem II reaction centers: location of the triplet state and the identity of the primary electron donor. Biophys J 88:986–998

    Article  PubMed  CAS  Google Scholar 

  • Rätsep M, Pieper J, Irrgang KD, Freiberg A (2008) Excitation wavelength-dependent electron-phonon and electron-vibrational coupling in the CP29 antenna complex of green plants. J Phys Chem B 112:110–118

    Article  PubMed  CAS  Google Scholar 

  • Redfield AG (1957) On the theory of relaxation processes. IBM J Res Dev 1:19–31

    Article  Google Scholar 

  • Renger T (2004) Theory of optical spectra involving charge transfer states: dynamic localization predicts a temperature dependent optical band shift. Phys Rev Lett 93(18):188101(1)–188101(4)

    Article  CAS  Google Scholar 

  • Renger T, Holzwarth AR (2008) Theory of excitation energy transfer and optical spectra of photosynthetic systems. In: Aartsma TJ, Matysik J (eds) Biophysical techniques in photosynthesis, Vol II. Springer, Dordrecht, The Netherlands, pp 421–443

    Chapter  Google Scholar 

  • Renger T, Marcus RA (2002a) On the relation of protein dynamics and exciton relaxation in pigment–protein complexes: an estimation of the spectral density and a theory for the calculation of optical spectra. J Chem Phys 116:9997–10019

    Article  CAS  Google Scholar 

  • Renger T, Marcus RA (2002b) Photophysical properties of PS-2 reaction centers and a discrepancy in exciton relaxation times. J Phys Chem B 106:1809–1819

    Article  CAS  Google Scholar 

  • Renger T, Marcus RA (2003) Variable–range hopping electron transfer through disordered bridge states: application to DNA. J Chem Phys 107:8404–8419

    CAS  Google Scholar 

  • Renger T, May V (1998) Ultrafast exciton motion in photosynthetic antenna systems: the FMO-complex. J Phys Chem A 102:4381–4391

    Article  CAS  Google Scholar 

  • Renger T, May V (2000) Simulations of frequency-domain spectra: structure–function relationships in photosynthetic pigment–protein complexes. Phys Rev Lett 84:5228–5231

    Article  PubMed  CAS  Google Scholar 

  • Renger T, May V, Kühn O (2001) Ultrafast excitation energy transfer dynamics in photosynthetic pigment–protein complexes. Phys Rep 343:138–254

    Article  Google Scholar 

  • Renger T, Trostmann I, Theiss C, Madjet ME, Richter M, Paulsen H, Eichler HJ, Knorr A, Renger G (2007) Refinement of a structural model of a pigment—protein complex by accurate optical line shape theory and experiments. J Phys Chem B 111(35):10487–10501

    Article  PubMed  CAS  Google Scholar 

  • Renger T, Grundkötter B, Madjet ME, Müh F (2008) Theory of solvatochromic shifts in nonpolar solvents reveals a new spectroscopic rule. Proc Natl Acad Sci USA 105(36):13235–13240

    Article  PubMed  Google Scholar 

  • Renger T, Madjet ME, Müh F, Trostmann FJ, Schmitt I, Theiss C, Paulsen H, Eichler HJ, Knorr A, Renger G (2009) Thermally activated superradiance and intersystem crossing in the water-soluble chlorophyll binding protein. J Phys Chem B. DOI: 101021/jp901886w

  • Scholes GD, Fleming GR (2000) On the mechanism of light harvesting in photosynthetic purple bacteria: B800 to B850 energy transfer. J Phys Chem B 104:1854–1868

    Article  CAS  Google Scholar 

  • Scholes GD, Curutchet C, Mennucci B, Cammi R, Tomasi J (2007) How solvent controls electronic energy transfer and light harvesting. J Phys Chem B 111:6978–6982

    Article  PubMed  CAS  Google Scholar 

  • Sumi H (1999) Theory on rates of excitation energy transfer between molecular aggregates through distributed transition dipoles with application to the antenna system in bacterial photosynthesis. J Phys Chem B 103:252–260

    Article  CAS  Google Scholar 

  • Theiss C, Trostmann I, Andree S, Schmitt FJ, Renger T, Eichler HJ, Paulsen H, Renger G (2007) Pigment–pigment and pigment–protein interactions in recombinant water-soluble chlorophyll proteins (WSCP) from cauliflower. J Phys Chem B 111:13325–13335

    Article  PubMed  CAS  Google Scholar 

  • Warshel A, Parson WW (1987) Spectroscopic properties of photosynthetic reaction centers. I. Theory. J Am Chem Soc 109:6143–6152

    Article  CAS  Google Scholar 

  • Wen J, Zhang H, Gross ML, Blankenship RE (2009) Membrane orientation of the FMO antenna protein from Chlorobaculum tepidum as determined by mass spectrometry-based footprinting. Proc Natl Acad Sci USA 106:6134–6139

    Article  PubMed  Google Scholar 

  • Wendling M, Pullerits T, Przyjalgowski MA, Vulto SIE, Aartsma TJ, van Grondelle R, van Amerongen H (2000) Electron-vibrational coupling in the Fenna–Matthews–Olson complex of Prosthecochloris aestuarii determined by temperature-dependent absorption and fluorescence line-narrowing measurements. J Phys Chem B 104:5825–5831

    Article  CAS  Google Scholar 

  • Wendling M, Przyjalgowski MA, Gülen D, Vulto SIE, Aartsma TJ, van Grondelle R, van Amerongen H (2002) The quantitative relationship between structure and polarized spectroscopy in the FMO complex of Prosthecochloris aestuarii: refining experiments and simulations. Photosynth Res 71:99–123

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Fleming GR (2002) Influence of phonons on exciton transfer dynamics: comparison of the Redfield, Förster, and modified Redfield equations. Chem Phys 275:355–372

    Article  CAS  Google Scholar 

  • Yang M, Damjanovic A, Vaswani HM, Fleming GR (2003) Energy transfer in Photosystem I of Cyanobacteria Synechococcus elongatus: model study with structure-based semi-empirical hamiltonian and experimental spectral density. Biophys J 85:140–158

    Article  PubMed  CAS  Google Scholar 

  • Yin S, Dahlbom MG, Canfield PJ, Hush NS, Kobayashi R, Reimers JR (2007) Assignment of the Qy absorption spectrum of photosystem-I from Thermosynechococcus elongatus based on CAM-B3LYP calculations at the PW91-optimized protein structure. J Phys Chem B 111:9923–9930

    Article  PubMed  CAS  Google Scholar 

  • Zhang WM, Meier T, Chernyak V, Mukamel S (1998) Exciton-migration and three-pulse femtosecond optical spectroscopies of photosynthetic antenna complexes. J Chem Phys 108:7763–7774

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to acknowledge support by the Deutsche Forschungsgemeinschaft through Emmy-Noether research grant RE 1610 and by the collaborative research centers Sfb 429 (TP A9) and Sfb 498 (TP A7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Renger.

Appendix

Appendix

Applications of TDC and TrEsp methods for coupling calculations

The TDC and TrEsp methods have been applied to calculate excitonic couplings, e.g., between the pigments in the light-harvesting complex II (LHC-II) of plants (Frahmke and Walla 2006), the light-harvesting complex 2 (LH2) of purple bacteria (Krueger et al 1998), the Fenna–Matthews–Olson (FMO) protein of green sulfur bacteria (Müh et al. 2007; Adolphs et al. 2008), photosystem II core complexes (Raszewski and Renger 2008), the special pairs in the reaction center of photosystem I of cyanobacteria, and the reaction center of purple bacteria (Madjet et al. 2006).

Structure-based calculations of site energies

Early quantum chemical calculations of site energies used a cutoff radius to include every amino acid with an atom within this radius of any pigment atom in the quantum chemical calculation of the optical transition energy of this pigment. This method was applied to the FMO-protein (Gudowska-Nowak et al. 1990) and photosystem I (Damjanovic et al. 2002a). The drawback of this method is the neglect of long-range electrostatic interactions of the pigments with protein parts outside the cutoff radius. In an alternative quantum chemical method the whole photosystem I protein was included by atomic partial charges into the quantum chemical calculation of pigment transition energies (Yin et al. 2007). The drawback of this method is the artificial distortion of the electronic wavefunction of the pigments by the external charges (the so-called electron leakage problem), which has its origin in the neglect of Pauli repulsion (Laio et al. 2002). These problems could be circumvented by a combined quantum chemical/electrostatic approach (Müh et al 2007; Adolphs et al. 2008), which was successfully applied to the FMO protein, as described in the main text.

Lineshape functions for absorbance and fluorescence of a two-level system coupled to a continuum of harmonic oscillators

The line shape functions are obtained as (Lax 1952; May and Kühn (2000); Renger and Holzwarth 2008)

$$ D_{\alpha/I}^{(k)}(\omega)={\hbox{e}}^{-G(0)} \left(\delta(\omega-\omega_{eg}^{(k)}) + \phi_k(\pm (\omega-\omega_{eg}^{(k)})) \right) $$
(15)

where the first part on the r.h.s. describes the purely electronic excitation (the 0-0 transition) at frequency \(\omega_{eg}^{(k)}\) and the second part the vibrational sideband

$$ \phi_k(\pm (\omega-\omega_{eg}^{(k)}))= \frac{1} {2\pi}\int\limits_{-\infty}^{\infty}\hbox{d}t\,\hbox{e}^{\pm {i} (\omega-\omega_{eg}^{(k)}) t} (\hbox{e}^{G(t)}-1). $$
(16)

The time-dependent function G(t) contains the spectral density of the pigment–protein coupling J(ω) and the mean number of vibrational quanta that are excited at a given temperature (Bose-Einstein distribution function) n(ω),

$$ G(t)=\int\limits_{0}^{\infty}\hbox{d}\omega \{ (1+n(\omega)) J(\omega)\,\hbox{e}^{-{i}\omega t}+ n(\omega)J(\omega)\hbox{e}^{{\rm i}\omega t}\}, $$
(17)
$$ n(\omega)=\frac{1}{\hbox{e}^{\hbar \omega/kT}-1}. $$
(18)

Applications of multi-level Redfield theory

Multi-level Redfield theory was used to describe excitation energy transfer, e.g., between the strongly coupled BChls in the LH2 antenna complex (Kühn and Sundström 1997; Kühn et al. 2002), in the reaction center of photosystem II (Leegwater et al 1997; Prokhorenko and Holzwarth 2000; Renger and Marcus 2002b), in the FMO-protein (Renger and May 1998; Adolphs and Renger 2006; Müh et al. 2007), in photosystem I core complexes (Brüggemann et al. 2004), in the LHC-II of green plants (Novoderezhkin et al. 2003), in the core light-harvesting complex LH1 of purple bacteria (Novoderezhkin and van Grondelle 2002), in the WSCP complex (Renger et al. 2007), in the domains of strongly coupled Chls of photosystem II core complexes (Raszewski and Renger 2008), and in model dimers (Kjellberg and Pullerits 2006; Yang and Fleming 2002).

Modified Redfield theory

The rate constant in modified Redfield theory is given as (Renger and Marcus 2003)

$$ k_{M\rightarrow N}=\int\limits_{-\infty}^{\infty}{\hbox{d}}\tau {\hbox{e}}^{{\rm i}\omega_{MN}\tau}\,\hbox{e}^{\phi_{MN}(\tau)-\phi_{MN}(0)} \times\left[\left(\frac{\lambda_{MN}}{\hbar}+G_{MN}(\tau)\right)^2+F_{MN}(\tau)\right], $$
(19)

where the time-dependent functions

$$ \phi_{MN}(t)= a_{MN} \phi_0(t), $$
(20)
$$ G_{MN}(t)=b_{MN} \phi_1(t), $$
(21)
$$ F_{MN}(t)=\gamma_{MN} \phi_2(t) $$
(22)

are related to the spectral density J(ω) via the function ϕ n (t),

$$ \phi_n(t)=\int\limits_{-\infty}^{\infty} \hbox{d}\omega\,\hbox{e}^{-{i}\omega t}(1+n(\omega))\omega^n (J(\omega)-J(-\omega)). $$
(23)

The time-independent part in the integrand in Eq. 19 is

$$ \lambda_{MN}=d_{MN} \lambda, $$
(24)

with the reorganization energy λ in Eq. 6. The coefficient γ MN was introduced in Eq. 12.

The coefficients a MN , b MN , d MN of modified Redfield theory were originally derived in the limit \(R_c \rightarrow \infty\) (Renger and Marcus 2003). The more general case of finite R c was considered later and yields the coefficients (Raszewski et al. 2005)

$$ a_{MN}=\sum_{ij} ((c_i^{(M)})^2(c_j^{(M)})^2+(c_i^{(N)})^2(c_j^{(N)})^2 -2(c_i^{(M)})^2(c_j^{(N)})^2) e^{-R_{ij}/R_c} $$
(25)
$$ b_{MN}=\sum_{ij} ((c_i^{(M)})^2 - (c_i^{(N)})^2) c_j^{(M)} c_j^{(N)} e^{-R_{ij}/R_c} $$
(26)
$$ d_{MN}=\sum_{ij} ((c_i^{(M)})^2 + (c_i^{(N)})^2) c_j^{(M)} c_j^{(N)} e^{-R_{ij}/R_c}. $$
(27)

Lineshape functions entering Generalized Förster theory

The multi-level lineshape functions, obtained with non-Markovian partial ordering prescription theory for absorbance and fluorescence read (Renger and Marcus 2002a; Raszewski and Renger 2008)

$$ D_{M_d}(\omega)=\frac{1} {2\pi} \int\limits_{-\infty}^{\infty} \hbox{d}t\,\hbox{e}^{{i}(\omega-\tilde{\omega}_{M_d})t} \hbox{e}^{G_{M_d}(t)-G_{M_d}(0)} \hbox{e}^{-|t|/\tau_{M_d}}, $$
(28)

and

$$ D_{M_d}^\prime (\omega)=\frac{1}{2\pi}\int\limits_{-\infty}^{\infty} \hbox{d}t \hbox{e}^{-{\rm i}(\omega-\tilde{\omega}_{M_d})t} \hbox{e}^{G_{M_d}(t)-G_{M_d}(0)} \hbox{e}^{-|t|/\tau_{M_d}}, $$
(29)

respectively, that contain the time-dependent function

$$ G_{M_d}(t)=\gamma_{M_d M_d} G(t), $$
(30)

where the \(\gamma_{M_d M_d}\) and G(t) are given in Eqs. 12 and 17, respectively, and the frequency \(\tilde{\omega}_{M_d}\) takes into account a shift of the exciton transition frequency \(\omega_{M_d}={\mathcal E}_{M_d}/\hbar\) by the pigment–protein coupling (Renger and May 2000; Renger and Marcus 2002a),

$$ \tilde{\omega}_{M_d}=\omega_{M_d}-\gamma_{M_dM_d}\lambda/\hbar +\sum_{K_d\ne M_d} \gamma_{M_dK_d}\times \wp \int\limits_{-\infty}^{\infty}\hbox{d}{\omega} \frac{\omega^2\left\{(1+n(\omega))J(\omega)+ n(-\omega)J(-\omega) \right\}}{\omega_{M_dK_d}-{\omega}}, $$
(31)

where λ is given in Eq. 6, \(\gamma_{M_dM_d}\) in Eq. 12, and ℘ denotes the principal part of the integral. As noted before, it holds that J(ω) = 0 for ω < 0. The \(\tau_{M_d}=\frac{1}{2}\sum_{N_d} k_{M_d\rightarrow N_d}\) describes life time broadening due to exciton relaxation with the Redfield rate constants \(k_{M_d\rightarrow N_d}\) given in Eq. 10.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renger, T. Theory of excitation energy transfer: from structure to function. Photosynth Res 102, 471–485 (2009). https://doi.org/10.1007/s11120-009-9472-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-009-9472-9

Keywords

Navigation