Skip to main content
Log in

Note on Affine Gagliardo–Nirenberg Inequalities

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

This note proves sharp affine Gagliardo–Nirenberg inequalities which are stronger than all known sharp Euclidean Gagliardo–Nirenberg inequalities and imply the affine L p-Sobolev inequalities. The logarithmic version of affine L p-Sobolev inequalities is verified. Moreover, an alternative proof of the affine Moser–Trudinger and Morrey–Sobolev inequalities is given. The main tools are the equimeasurability of rearrangements and the strengthened version of the classical Pólya–Szegö principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agueh, M.: Sharp Gagliardo–Nirenberg inequalities and mass transport theory. J. Dyn. Differ. Equ. 18(4), 1069–1093 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Agueh, M.: Gagliardo–Nirenberg inequalities involving the gradient L 2-norm. C. R. Math. Acad. Sci. Paris Ser. I 346, 757–762 (2008)

    MATH  MathSciNet  Google Scholar 

  3. Agueh, M.: Sharp Gagliardo–Nirenberg inequalities via p-Laplacian type equations. Nonlinear Differ. Equ. Appl. 15, 457–472 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aubin, T.: Problèmes isopérimetriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)

    MATH  MathSciNet  Google Scholar 

  5. Brothers, J.E., Ziemer, W.P.: Minimal rearrangements of Sobolev functions. J. Reine Angew. Math. 384, 153–179 (1988)

    MATH  MathSciNet  Google Scholar 

  6. Carlen, E., Loss, M.: Sharp constant in Nash’s inequality. Int. Math. Res. Not. 7, 213–215 (1993)

    Article  MathSciNet  Google Scholar 

  7. Carleson, L., Chang, S.Y.A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. 110, 113–127 (1986)

    MATH  MathSciNet  Google Scholar 

  8. Chen, W.: L p Minkowski problem with not necessarily positive data. Adv. Math. 201, 77–89 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chou, K.S., Wang, X.J.: The L p  −Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math. 205, 33–83 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cianchi, A., Lutwak, E., Yang D., Zhang, G.: Affine Moser–Trudinger and Morrey–Sobolev inequalities. Calc. Var. Partial Differ. Equ. 36, 419–436 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cordero-Erausquin, D., Nazaret, B., Villani, C.: A mass transportation approach to sharp Sobolev and Gagliardo–Nirenberg inequalities. Adv. Math. 182, 307–332 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Del Pino, M., Dolbeault, J.: Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81(9), 847–875 (2002)

    MATH  MathSciNet  Google Scholar 

  13. Del Pino, M., Dolbeault, J.: Nonlinear diffusion and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving p-Laplacian. C. R. Math. Acad. Sci. Paris Ser. I 334, 365–370 (2002)

    MATH  Google Scholar 

  14. Del Pino, M., Dolbeault, J.: The optimal Euclidean L p −Sobolev logarithmic inequaity. J. Funct. Anal. 197(1), 151–161 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Del Pino, M., Dolbeault, J.: Asymptotic behaviour of nonlinear diffusions. Math. Res. Lett. 10(4), 551–557 (2003)

    MATH  MathSciNet  Google Scholar 

  16. Del Pino, M., Dolbeault J., Gentil, I.: Nonlinear diffusions, hypercontractivity and the optimal L p  −Euclidean logarithmic Sobolev inequality. J. Math. Anal. Appl. 293(2), 375–388 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Federer, H., Fleming, W.: Normal and integral currents. Ann. Math. 72, 458–520 (1960)

    Article  MathSciNet  Google Scholar 

  18. Gagliardo, E.: Proprietà di alcune classi di funzioni più variabili. Ric. Mat. 7, 102–137 (1958)

    MATH  MathSciNet  Google Scholar 

  19. Gardner, R.J.: Geometric tomography. In: Encyclopedia of Mathematics and Its Applications, vol. 58. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  20. Gentil, I.: The general optimal L p-Euclidean logarithmic Sobolev inequality by Hamilton-Jacobi equations. J. Funct. Anal. 202, 591–599 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math. 97, 1061–1083 (1975)

    Article  Google Scholar 

  22. Hilden, K.: Symmetrization of functions in Sobolev spaces and the isoperimetric inequality. Manuscr. Math. 18, 215–235 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hu, C., Ma, X.N., Shen, C.: On the Christoffel–Minkowski problem of Firey’s p-sum. Calc. Var. Partial Differ. Equ. 21, 137–155 (2004)

    MATH  MathSciNet  Google Scholar 

  24. Kawohl, B.: Rearrangements and convexity of level sets in PDE. In: Lecture Notes in Math., vol 1150. Springer, Berlin (1985)

    Google Scholar 

  25. Kawohl, B.: On the isoperimetric nature of a rearrangement inequality and its consequences for some variational problems. Arch. Ration. Mech. Anal. 94, 227–243 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ludwig, M.: Ellipsoids and matrix-valued valuations. Duke Math. J. 119, 159–188 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ludwig, M.: Minkowski valuations. Trans. Am. Math. Soc. 357, 4191–4213 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lutwak, E.: The Brunn–Minkowski–Firey theory. I. Mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993)

    MATH  MathSciNet  Google Scholar 

  29. Lutwak, E.: The Brunn–Minkowski–Firey theory. II. Affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lutwak, E., Oliker, V.: On the regularity of solutions to a generalization of the Minkowski problem. J. Differ. Geom. 41, 227–246 (1995)

    MATH  MathSciNet  Google Scholar 

  31. Lutwak, E., Yang, D., Zhang, G.: A new ellipsoid associated with convex bodies. Duke Math. J. 104, 375–390 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lutwak, E., Yang, D., Zhang, G.: On L p affine isoperimetric inequalities. J. Differ. Geom. 56, 111–132 (2000)

    MATH  MathSciNet  Google Scholar 

  33. Lutwak, E., Yang E., Zhang, G.: Sharp affine L p Sobolev inequalities. J. Differ. Geom. 62, 17–38 (2002)

    MATH  MathSciNet  Google Scholar 

  34. Lutwak, E., Yang, D., Zhang, G.: The Cramer–Rao inequality for star bodies. Duke Math. J. 112, 59–81 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Lutwak, E., Yang, D., Zhang, G.: On the L p Minkowski problem. Trans. Am. Math. Soc. 356, 4359–4370 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lutwak, E., Yang, D., Zhang, G.: Optimal Sobolev norms and the L p Minkowski problem. Int. Math. Res. Not., 21 pp., Art. ID 62987 (2006)

  37. Maz’ya, V.M.: Classes of domains and imbedding theorems for function spaces. Dokl. Akad. Nauk. SSSR 133, 527–530 (1960) (Russian); English translation: Soviet Math. Dokl. 1, 882–885 (1960)

  38. Moser, J.: A sharp form of an inequality by N. Trudinger. Indianap. Univ. Math. J. 20, 1077–1092 (1971)

    Article  Google Scholar 

  39. Nirenberg, L.: On elliptic partial differential equations. Ann. Sc. Norm. Pisa 13, 116–162 (1959)

    MathSciNet  Google Scholar 

  40. Schneider, R.: Convex bodies: the Brunn–Minkowski theory. In: Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  41. Sperner, E.: Symmetrisierung für Funktionen mehrerer reeller Variablen. Manus. Math. 11, 159–170 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  42. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  43. Thompson, A.C.: Minkowski geometry. In: Encyclopedia of Mathematics and Its Applications, vol. 63. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  44. Weissler, F.B.: Logarithmic Sobolev inequalities for the heat-diffusion semigroup. Trans. Am. Math. Soc. 237, 255–269 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  45. Zhang, G.: The affine Sobolev inequality. J. Differ. Geom. 53(1), 183–202 (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichun Zhai.

Additional information

Project supported in part by Natural Science and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhai, Z. Note on Affine Gagliardo–Nirenberg Inequalities. Potential Anal 34, 1–12 (2011). https://doi.org/10.1007/s11118-010-9176-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-010-9176-y

Keywords

Mathematics Subject Classifications (2010)

Navigation