Skip to main content
Log in

Ecosystem changes in Galápagos highlands by the invasive tree Cinchona pubescens

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Various studies address changes in nitrogen and carbon cycling by exotic plant species, while impacts on phosphorus cycling are understudied. Therefore, we assessed the effects of the introduced Cinchona pubescens Vahl on plant and soil nutrients (especially phosphorus) in the highlands of Santa Cruz Island, Galápagos.

Methods

Nutrient analyses were carried out on soil, leaf litter, and leaf samples taken from Cinchona, the endemic shrub Miconia robinsoniana Cogn. and the native fern Pteridium arachnoideum (Kaulf.) Maxon. in plots invaded and previously invaded by Cinchona.

Results

Cinchona contained significantly more nitrogen, phosphorus and potassium in its green leaves than Miconia. Surprisingly, there was no evidence of phosphorus resorption in senesced Cinchona leaves. This was also the case in Miconia leaves, but only in Cinchona-invaded plots. Specific leaf area of Cinchona was significantly higher than of Miconia and Pteridium leaves, as was its litter turnover rate. Total soil nitrogen, ammonium and available phosphorus concentrations were higher in the invaded plots. Leaf litter from these plots also contained more phosphorus, which was positively correlated with the phosphorus concentrations in the soil.

Conclusions

These results suggest enhanced nutrient uptake by Cinchona and a faster decomposition of its litter, leading to increased nutrient availability in the soil. An accelerated cycling could promote spread of Cinchona and other introduced species, increasing the risk of further displacement of indigenous plant species in the Santa Cruz highlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acosta Solís M (1945) Hábitat y distribución de las Cinchonas en el Ecuador. Flora 6:9–18, Revista al Servicio de las Ciencias Naturales y Biológicas, Inst. Ecuatoriano de Ciencias Naturales

    Google Scholar 

  • Aerts R (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol 84:597–608

    Article  Google Scholar 

  • Allison SD, Vitousek PM (2004) Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i. Oecologia 141:612–619

    Article  PubMed  Google Scholar 

  • Andersson L (1998) A revision of the Genus Cinchona (Rubiaceae-Cinchoneae). New York Botanical Garden Press Department, New York

  • Ashton IW, Hyatt LA, Howe KM, Gurevitch J, Lerdau M (2005) Invasive species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest. Ecol Appl 15:1263–1272

    Article  Google Scholar 

  • Austin AT, Vitousek PM (1998) Nutrient dynamics on a precipitation gradient in Hawai’i. Oecologia 113:519–529

    Article  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach, 2nd edn. Wiley, New York

    Google Scholar 

  • Baruch Z, Goldstein G (1999) Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia 121:183–192

    Article  Google Scholar 

  • Bow CS (1979) Geology and petrogenesis of lavas from Floreana and Santa Cruz Islands, Galápagos Archipelago. Dissertation, University of Oregon

  • Buddenhagen CE, Rentería JL, Gardener M, Wilkinson MS, Soria M, Yánez M, Tye A, Valle R (2004) The control of a highly invasive tree Cinchona pubescens in Galapagos. Weed Technol 18:1194–1202

    Article  Google Scholar 

  • Camping TJ, Dahlgren RA, Tate KW, Horwath WR (2002) Changes in soil quality due to grazing and oak tree removal in California blue oak woodlands. USDA Forest Service Gen Tech Rep PSW-GTR-184

  • Chacón G (2010) Variación de las propiedades químicas del suelo bajo vegetación nativa e introducida en las zonas altas de Santa Cruz, Galápagos. Coloquio 46:18–20

    Google Scholar 

  • Chapuis-Lardy L, Vanderhoeven S, Dassonville N, Koutika LS, Meerts P (2006) Effects of the exotic invasive plant Solidago gigantea on soil phosphorus status. Biol Fertil Soils 42:481–489

    Article  Google Scholar 

  • Collins A, Jose S (2009) Imperata cylindrica, an exotic invasive grass, changes soil chemical properties of forest ecosystems in the southeastern United States. In: Kohli RK, Jose S, Singh HP, Batish DR (eds) Invasive plants and forest ecosystems. CRC Press, Boca Raton, pp 237–250

    Google Scholar 

  • Corbin JD, D’Antonio CM (2012) Gone but not forgotten? Invasive plants’ legacies on community and ecosystem properties. Invasive Plant Sci Manage 5:117–124

    Article  Google Scholar 

  • Cordell S, Goldstein G, Meinzer FC, Vitousek PM (2001) Regulation of leaf life-span and nutrient-use efficiency of Metrosideros polymorpha trees at two extremes of a long chronosequence in Hawaii. Oecologia 127:198–206

    Article  Google Scholar 

  • Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM (1995) Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76:1407–1424

    Article  Google Scholar 

  • Denslow JS, Space JC, Thomas PA (2009) Invasive exotic plants in the tropical Pacific islands: patterns of diversity. Biotropica 41:162–170

    Article  Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523

    Article  CAS  Google Scholar 

  • Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Syst 41:59–80

    Article  Google Scholar 

  • Ehrenfeld JG, Scott N (2001) Invasive species and the soil: effects on organisms and ecosystem processes. Ecol Appl 11:1259–1260

    Article  Google Scholar 

  • Fischer LK, von der Lippe M, Kowarik I (2009) Tree invasion in managed tropical forests facilitates endemic species. J Biogeogr 36:2251–2263

    Article  Google Scholar 

  • Fisher JL, Veneklaas EJ, Lambers H, Loneragan WA (2006) Enhanced soil and leaf nutrient status of a Western Australian Banksia woodland community invaded by Ehrharta calycina and Pelargonium capitatum. Plant Soil 284:253–264

    Article  CAS  Google Scholar 

  • Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion in low- resource systems. Nature 446:1079–1081

    Article  PubMed  CAS  Google Scholar 

  • Geist D (1996) On the emergence and submergence of the Galápagos Islands. Noticias de Galápagos 56:5–9

    Google Scholar 

  • Godoy O, Castro-Díez P, van Logtestijn RSP, Cornelissen JHC, Valladares F (2010) Leaf litter traits of invasive alien species slow down decomposition compared to Spanish natives: a broad phylogenetic comparison. Oecologia 162:781–790

    Article  PubMed  Google Scholar 

  • Hamann O (1974) Contribution to the flora and vegetation of the Galápagos Islands. III. Five new floristic records. Bot Notiser 127:309–316

    Google Scholar 

  • Hawkins B, Polglase PJ (2000) Foliar concentrations and resorption of nitrogen and phosphorus in 15 species of eucalyptus grown under non-limited water and nutrient availability. Aust J Bot 48:597–602

    Article  Google Scholar 

  • Hughes RF, Denslow JS (2005) Invasion by a N-2-fixing tree alters function and structure in wet lowland forests of Hawaii. Ecol Appl 15:1615–1628

    Article  Google Scholar 

  • Hughes RF, Uowolo AL, Togia TP (2012) Recovery of native forest after removal of an invasive tree, Falcataria moluccana, in American Samoa. Biol Invasion 14:1393–1413

    Article  Google Scholar 

  • SAS Institute Inc (2009) JMP® 8 Automation Reference. Cary, NC

  • Jäger H (2011) Cinchona pubescens. In: Roloff A, Weisgerber H, Lang U, Stimm B (eds) Enzyklopädie der Holzgewächse, 58. Erg. Lfg. 06/11. Wiley-VCH, Weinheim, p 14

    Google Scholar 

  • Jäger H, Kowarik I (2010) Resilience of native plant community following manual control of invasive Cinchona pubescens in Galápagos. Restor Ecol 18:103–112

    Article  Google Scholar 

  • Jäger H, Tye A, Kowarik I (2007) Tree invasion in naturally treeless environments: impacts of quinine (Cinchona pubescens) trees on native vegetation in Galápagos. Biol Conserv 140:297–307

    Article  Google Scholar 

  • Jäger H, Kowarik I, Tye A (2009) Destruction without extinction: long-term impacts of an invasive tree species on Galápagos highland vegetation. J Ecol 97:1252–1263

    Article  Google Scholar 

  • Jia Y, Gray VM, Straker CJ (2004) The influence of Rhizobium and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by Vicia faba. Ann Bot 94:251–258

    Article  PubMed  CAS  Google Scholar 

  • Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77:1716–1727

    Article  Google Scholar 

  • Kimble JM, Ping CL, Sumner ME, Wilding LP (2000) Andisols. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton, pp E209–E224

    Google Scholar 

  • Kitayama K, Itow S (1999) Aboveground biomass and soil nutrient pools of a Scalesia pedunculata montane forest on Santa Cruz, Galápagos. Ecol Res 14:405–408

    Article  Google Scholar 

  • Kitayama K, Schuur EAG, Drake DR, Mueller-Dombois D (1997) Fate of a wet montane forest during soil aging in Hawaii. J Ecol 85:669–679

    Article  Google Scholar 

  • Kueffer C (2010) Reduced risk for positive soil-feedback on seedling regeneration by invasive trees on a very nutrient-poor soil in Seychelles. Biol Invasion 12:97–102

    Article  Google Scholar 

  • Kueffer C, Klingler G, Zirfass K, Schumacher E, Edwards PJ, Güsewell S (2008) Invasive trees show only weak potential to impact nutrient dynamics in phosphorus-poor tropical forests in the Seychelles. Funct Ecol 22:359–366

    Article  Google Scholar 

  • Kurten EL, Snyder CP, Iwata T, Vitousek PM (2008) Morella cerifera invasion and nitrogen cycling on a lowland Hawaiian lava flow. Biol Invasion 10:19–24

    Article  Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    Article  PubMed  Google Scholar 

  • Lambers H, Bishop JG, Hopper SD, Laliberté E, Zúñiga-Feest A (2012) Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems. Ann Bot 110:329–348

    Article  PubMed  CAS  Google Scholar 

  • Laruelle J (1966) Study of a soil sequence on Indefatigable Island. In: Bowman RI (ed) The Galápagos. Proceedings of the symposia of the Galápagos international scientific project. University of California Press, California, pp 87–92

    Google Scholar 

  • Leishman MR, Haslehurst T, Ares A, Baruch Z (2007) Leaf trait relationships of native and invasive plants: community- and global-scale comparisons. New Phytol 176:635–643

    Article  PubMed  CAS  Google Scholar 

  • Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C, Chen J, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714

    Article  PubMed  CAS  Google Scholar 

  • Lindsay EA, French K (2005) Litterfall and nitrogen cycling following invasion by Chrysanthemoides monilifera ssp. rotundata in coastal Australia. J Appl Ecol 42:556–566

    Article  CAS  Google Scholar 

  • Macdonald IAW, Ortiz L, Lawesson JE (1988) The invasion of highlands in Galápagos by the Red Quinine-tree Cinchona succirubra. Environ Conserv 15:215–220

    Article  Google Scholar 

  • Mack MC, D’Antonio CM (2003) The effects of exotic grasses on litter decomposition in a Hawaiian woodland: the importance of indirect effects. Ecosystems 6:723–738

    Article  Google Scholar 

  • Martin MR, Tipping PW, Sickman JO (2009) Invasion by an exotic tree alters above and belowground ecosystem components. Biol Invasion 11:1883–1894

    Article  Google Scholar 

  • Meisner A, de Boer W, Koen JF, Verhoeven F, Boschker HTS, van der Putten WH (2011) Comparison of nutrient acquisition in exotic plant species and congeneric natives. J Ecol 99:1308–1315

    Article  CAS  Google Scholar 

  • Meyer J-Y (2004) Threat of invasive alien plants to native flora and forest vegetation of Eastern Polynesia. Pac Sci 58:357–375

    Article  Google Scholar 

  • Milla R, Palacio-Blasco S, Maestro-Martínez M, Montserrat-Martí G (2006) Phosphorus accretion in old leaves of a Mediterranean shrub growing at a phosphorus-rich site. Plant Soil 280:369–372

    Article  CAS  Google Scholar 

  • Miyasaka SC, Habte M (2001) Plant mechanisms and mycorrhizal symbiosis to increase P uptake. Commun Soil Sci Plant Anal 32:1101–1147

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331

    Article  Google Scholar 

  • Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18:137–149

    Article  Google Scholar 

  • Pyšek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W (ed) Biological invasions, ecological studies 193. Springer, Berlin, pp 97–126

    Google Scholar 

  • Rasband WS (2004) ImageJ, U. S. National Institutes of Health, Bethesda, Maryland

  • Richardson SJ, Peltzer DA, Allen RB, McGlone MS (2005) Resorption proficiency along a chronosequence: responses among communities and within species. Ecology 86:20–25

    Article  Google Scholar 

  • Sala OE, Chapin FS III, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Scharfy D, Eggenschwiler H, Venterink HO, Edwards PJ, Güsewell S (2009) The invasive alien plant species Solidago gigantea alters ecosystem properties across habitats with differing fertility. J Veg Sci 20:1072–1085

    Article  Google Scholar 

  • Schmidt SK, Scow KM (1986) Mycorrhizal fungi on the Galápagos Islands. Biotropica 18:236–240

    Article  Google Scholar 

  • Schüller H (1969) Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzenverfügbaren Phosphats in Böden. Z Pflanzenernähr Bodenkd 123:48–63

    Article  Google Scholar 

  • Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasion 1:21–32

    Article  Google Scholar 

  • Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879

    Article  PubMed  CAS  Google Scholar 

  • Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97–104

    Article  Google Scholar 

  • Thorpe AS, Archer V, DeLuca TH (2006) The invasive forb, Centaurea maculosa, increases phosphorus availability in Montana grasslands. Appl Soil Ecol 32:118–122

    Article  Google Scholar 

  • Tilman D (1985) The resource ratio hypothesis of succession. Am Nat 125:827–852

    Article  Google Scholar 

  • Tilman D (1993) Species richness of experimental productivity gradients: how important is colonization limitation? Ecology 74:2179–2191

    Article  Google Scholar 

  • Vanderhoeven S, Dassonville N, Meerts P (2005) Increased topsoil mineral nutrient concentrations under exotic invasive plants in Belgium. Plant Soil 275:169–179

    Article  CAS  Google Scholar 

  • Van Heerwaarden LM, Toet S, Aerts R (2003) Current measures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: facts and solutions. Oikos 101:664–669

    Article  Google Scholar 

  • Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012) Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol Monogr 82:205–220

    Article  Google Scholar 

  • Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708

    Article  PubMed  Google Scholar 

  • Vitousek PM (1998) Foliar and litter nutrients, nutrient resorption, and decomposition in Hawaiian Metrosideros polymorpha. Ecosystems 1:401–407

    Article  CAS  Google Scholar 

  • Vitousek PM, Walker LR (1989) Biological invasion by Myrica faya in Hawai’i: plant demography, nitrogen fixation, ecosystem effects. Ecol Monogr 59:247–265

    Article  Google Scholar 

  • Vitousek PM, Van Cleve K, Balakrishnan N, Mueller-Dombois D (1983) Soil development and nitrogen turnover in montane rainforest soils on Hawai’i. Biotropica 15:268–274

    Article  Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    Article  CAS  Google Scholar 

  • Wassen MJ, Venterink HO, Lapshina ED, Tanneberger F (2005) Endangered plants persist under phosphorus limitation. Nature 437:547–550

    Article  PubMed  CAS  Google Scholar 

  • Wood TE, Lawrence D, Wells JA (2011) Inter-specific variation in foliar nutrients and resorption of nine canopy-tree species in a secondary neotropical rain forest. Biotropica 43:544–551

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG) and by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme. We would like to thank the Charles Darwin Foundation for logistic support and the Galápagos National Park for permission to carry out the research and for sample export permits. Karin Grandy, Claudia Kuntz, Marie-José Limoges, Sabine Rautenberg, Monika Rohrbeck and Caeley Thacker provided invaluable support in the field and lab. Furthermore we would like to thank Stephen Porder, Michael Rode, Alan Tye and members of the Porder lab at Brown University for comments on an earlier version of this manuscript and Jon Witman for the final revision. This paper is contribution number 1071 of the Charles Darwin Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinke Jäger.

Additional information

Responsible Editor: Hans Lambers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Concentration (=Resorption proficiency) of N, P, K, Ca, Mg, and C (mg g−1) and C:N and N:P of senesced leaves of Pteridium arachnoideum, Cinchona pubescens, and Miconia robinsoniana across four sites in the Miconia zone (two sites with current and two sites with previous Cinchona invasion). Values are means ± SE, n = 14. Levels within the same nutrient not connected by the same letter were significantly different in Tukey’s HSD test after three-way-ANOVA (invaded plots only, upper case letter, shaded) and after four-way-ANOVA (invaded and previously invaded sites, lower case letter, shaded and non-shaded) (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jäger, H., Alencastro, M.J., Kaupenjohann, M. et al. Ecosystem changes in Galápagos highlands by the invasive tree Cinchona pubescens . Plant Soil 371, 629–640 (2013). https://doi.org/10.1007/s11104-013-1719-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1719-8

Keywords

Navigation