Skip to main content

Advertisement

Log in

Relationships between leaf morphological traits, nutrient concentrations and isotopic signatures for Mediterranean woody plant species and communities

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Soil factors are driving forces that influence spatial distribution and functional traits of plant species. We test whether two anchor morphological traits—leaf mass per area (LMA) and leaf dry matter content (LDMC)—are significantly related to a broad range of leaf nutrient concentrations in Mediterranean woody plant species. We also explore the main environmental filters (light availability, soil moisture and soil nutrients) that determine the patterns of these functional traits in a forest stand.

Methods

Four morphological and 19 chemical leaf traits (macronutrients and trace elements and δ13C and δ15N signatures) were analysed in 17 woody plant species. Community-weighted leaf traits were calculated for 57 plots within the forest. Links between LMA, LDMC and other leaf traits were analysed at the species and the community level using standardised major axis (SMA) regressions

Results

LMA and LDMC were significantly related to many leaf nutrient concentrations, but only when using abundance-weighted values at community level. Among-traits links were much weaker for the cross-species analysis. Nitrogen isotopic signatures were useful to understand different resource-use strategies. Community-weighted LMA and LDMC were negatively related to light availability, contrary to what was expected.

Conclusion

Community leaf traits have parallel shifts along the environmental factors that determine the community assembly, even though they are weakly related across individual taxa. Light availability is the main environmental factor determining this convergence of the community leaf traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackerly DD (2004) Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol Monogr 74:25–44

    Article  Google Scholar 

  • Ackerly DD, Knight CA, Weiss SB, Barton K, Starmer KP (2002) Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia 130:449–457

    Article  Google Scholar 

  • Aerts R (1995) The advantages of being evergreen. Trends Ecol Evol 10:402–407

    Article  PubMed  CAS  Google Scholar 

  • Aponte C, García LV, Pérez-Ramos IM, Gutiérrez E, Marañón T (2011) Oak trees and soil interactions: a positive feedback model. J Veg Sci 22:856–867

    Article  Google Scholar 

  • Canham CD, Finzi AC, Pacala SW, Burbank DH (1994) Causes and consequences of resource heterogeneity in forests: interspecific variation in light transmission by canopy trees. Can J For Res 24:337–349

    Article  Google Scholar 

  • Chen FS, Niklas K, Zeng DH (2011) Important foliar traits depend on species-grouping: analysis of a remnant temperate forest at the Keerqin Sandy Lands, China. Plant Soil 340:337–345

    Article  CAS  Google Scholar 

  • Cingolani AM, Posse G, Collantes MB (2005) Plant functional traits, herbivory selectivity and response to sheep grazing in Patagonian steppe grasslands. J Appl Ecol 42:50–59

    Article  Google Scholar 

  • Cingolani AM, Cabildo M, Gurvich DE, Renison D, Díaz S (2007) Filtering processes in the assembly of plant communities: are species presence and abundance driven by the same traits? J Veg Sci 18:911–920

    Article  Google Scholar 

  • Coley PD (1988) Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia 74:531–536

    Article  Google Scholar 

  • Cornelissen JHC, Pérez-Harguindeguy N, Díaz S, Grime JP, Marzano B, Cabido M, Vendramini F, Cerabolini B (1999) Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol 143:191–200

    Article  Google Scholar 

  • Cornelissen JHC, Aerts R, Cerabolini B, Werger M, van der Heijden M (2001) Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129:611–619

    Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich D, Reich P, ter Steege H, Morgan H, van der Heijden M, Pausas J, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Cornwell WK, Ackerly DD (2010) A link between plant traits and abundance: evidence from coastal California woody plants. J Ecol 98:814–821

    Article  Google Scholar 

  • Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Peñuelas J, Reich PB, Schuur EAG, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992

    Article  PubMed  CAS  Google Scholar 

  • Cunningham SA, Summerhayes B, Westoby M (1999) Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol Monogr 69:569–588

    Article  Google Scholar 

  • de Bello F, Buchmann N, Casals P, Leps J, Sebastià MT (2009) Relating plant species and functional diversity to community δ13C in NE Spain pastures. Agric Ecosyst Environ 131:303–307

    Article  Google Scholar 

  • de Lillis M, Fontanella A (1992) Comparative phenology and growth in different species of the Mediterranean maquis of central Italy. Vegetatio 99–100:83–96

    Article  Google Scholar 

  • Diaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304

    Google Scholar 

  • Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson M (2007) Incorporating plant functional diversity effects in ecosystem service assesments. Proc Natl Acad Sci USA 104:20684–20689

    Article  PubMed  Google Scholar 

  • Escudero A, Mediavilla S, Heilmeier H (2008) Leaf longevity and drought: avoidance of the costs and risks of early leaf abscission as inferred from the leaf carbon isotopic composition. Funct Plant Biol 35:705–713

    Article  CAS  Google Scholar 

  • Falster DS, Warton DI, Wright IJ (2006) User’s guide to SMATR: Standardised major axis tests and routines. Version 2.0, Copyright 2006. Website http://www.bio.mq.edu.au/ecology/SMATR

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Fonseca CR, Overton JM, Collins B, Westoby M (2000) Shifts in trait-combinations along rainfall and phosphorus gradients. J Ecol 88:964–977

    Article  Google Scholar 

  • Freschet GT, Dias ATC, Ackerly DD, Aerts R, van Bodegom PM, Cornwell WK, Dong M, Kurokawa H, Liu G, Onipchenko VG, Ordoñez JC, Peltzer DA, Richardson SJ, Shidakov II, Soudzilovskaia NA, Tao J, Cornelissen JHC (2011) Global to community scale differences in the prevalence of convergent over divergent leaf trait distributions in plant assemblages. Global Ecol Biogeogr 20:755–765

    Article  Google Scholar 

  • Fyllas NM, Patiño S, Baker TR, Bielefeld Nardoto G, Martinelli LA, Quesada CA, Paiva R, Schwarz M, Horna V, Mercado LM, Santos A, Arroyo L, Jiménez EM, Luizão FJ, Neill DA, Silva N, Prieto A, Rudas A, Silviera M, Vieira ICG, Lopez-Gonzalez G, Malhi Y, Phillips OL, Lloyd J (2009) Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6:2677–2708

    Article  Google Scholar 

  • Galmés J, Flexas J, Savá R, Medrano H (2007) Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery. Plant Soil 290:139–155

    Article  Google Scholar 

  • García LV (2003) Controlling the false discovery rate in ecological research. Trends Ecol Evol 18:553–554

    Article  Google Scholar 

  • García LV, Maltez-Mouro S, Pérez-Ramos IM, Freitas H, Marañón T (2006) Counteracting gradients of light and soil nutrients in the undestorey of Mediterranean oak forest. Web Ecol 6:67–74

    Google Scholar 

  • Garnier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas ML (2001) Consistency of species ranking based on functional leaf traits. New Phytol 152:69–83

    Article  Google Scholar 

  • Garnier E, Cortez J, Billes G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637

    Article  Google Scholar 

  • Garten CT (1978) Multivariate perspectives on the ecology of plant mineral element composition. Am Nat 112:533–544

    Article  CAS  Google Scholar 

  • Grime JP, Thompson K, Hunt R, Hodgson JG, Cornelissen JHC, Rorison IH, Hendry GAF, Ashenden TW, Askew AP, Band SR, Booth RE, Bossard CC, Campbell BD, Cooper JEL, Davison AW, Gupta PL, Hall W, Hand DW, Hannah MA, Hillier SH, Hodkinson DJ, Jalili A, Liu Z, Mackey JML, Matthews N, Mowforth MA, Neal AM, Reader RJ, Reiling K, Ross-Fraser W, Spencer RE, Sutton F, Tasker DE, Thorpe PC, Whitehouse (1997) Integrated screening validates primary axes of specialisation in plants. Oikos 79:259–281

    Article  Google Scholar 

  • Hernández E, Vilagrosa A, Pausas J, Bellot J (2010) Morphological traits and water use strategies in seedlings of Mediterranean coexisting species. Plant Ecol 207:233–244

    Article  Google Scholar 

  • Hobbie SE (1992) Effects of plant species on nutrient cycling. Trends Ecol Evol 7:336–339

    Article  PubMed  CAS  Google Scholar 

  • Hobbie EA, Macko SA, Shugart HH (1999) Interpretation of nitrogen isotope signatures using the NIFTE model. Oecologia 120:405–415

    Article  Google Scholar 

  • Hobbie EA, Macko SA, Williams M (2000) Correlations between foliar δ15N and nitrogen concentrations may indicate plant-mycorrhizal interactions. Oecologia 122:273–283

    Article  Google Scholar 

  • Hochberg Y, Benjamini Y (2000) On the adaptive control of the false discovery rate in multiple testing with independent statistics. J Educ Behav Stat 25:60–83

    Google Scholar 

  • Hodgson JG, Montserrat-Martí G, Charles M, Jones G, Wilson P, Shipley B, Sharafi M, Cerabolini BEL, Cornelissen JHC, Band SR, Bogard A, Castro-Díez P, Guerrero-Campo J, Palmer C, Pérez-Rontomé MC, Carter G, Hynd A, Romo-Díez A, de Torres EL, Royo Pla F (2011) Is leaf dry matter content a better predictor of soil fertility than specific leaf area? Ann Bot 108:1337–1345

    Article  PubMed  CAS  Google Scholar 

  • Högberg P (1990) 15 N natural abundance as a possible marker of the ectomycorrhizal habit of trees in mixed African woodlands. New Phytol 115:483–486

    Article  Google Scholar 

  • Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137:179–203

    Article  Google Scholar 

  • Holdaway RJ, Richardson SJ, Dickie IA, Peltzer DA, Coomes DA (2011) Species- and community-level patterns in fine root traits along a 120000-year soil chronosequence in temperate rain forest. J Ecol 99:954–963

    Article  Google Scholar 

  • Jones JB, Case VW (1990) Sampling, handling and analyzing plant tissues samples. In: Westerman R (ed) Soil testing and plant analysis. Soil Science Society of America, Madison, pp 389–427

    Google Scholar 

  • Jung V, Violle C, Mondy C, Hoffmann L, Muller S (2010) Intraspecific variability and trait-based community assembly. J Ecol 98:1134–1140

    Article  Google Scholar 

  • Kranabetter J, MacKenzie W (2010) Contrast among mycorrhizal plant guilds in foliar nitrogen concentration and δ15N along productivity gradients of a boreal forest. Ecosystems 13:108–117

    Article  CAS  Google Scholar 

  • Lambers H, Brundrett MC, Raven JA, Hopper SD (2010) Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334:11–31

    Article  CAS  Google Scholar 

  • Lamont BB, Groom PK, Cowling RM (2002) High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrations. Funct Ecol 16:403–412

    Article  Google Scholar 

  • Liu G, Freschet GT, Pan X, Cornelissen JHC, Li Y, Dong M (2010) Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytol 188:543–553

    Article  PubMed  Google Scholar 

  • Maremmani A, Bedini S, Matoševic I, Tomei P, Giovannetti M (2003) Type of mycorrhizal associations in two coastal nature reserves of the Mediterranean basin. Mycorrhiza 13:33–40

    Article  PubMed  Google Scholar 

  • Mediavilla S, Garcia-Ciudad A, Garcia-Criado B, Escudero A (2008) Testing the correlations between leaf life span and leaf structural reinforcement in 13 species of European Mediterranean woody plants. Funct Ecol 22:787–793

    Article  Google Scholar 

  • Meers TL, Bell TL, Enright NJ, Kasel S (2010) Do generalisations of global trade-offs in plant design apply to an Australian sclerophyllous flora? Aust J Bot 58:257–270

    Google Scholar 

  • Meziane D, Shipley B (2001) Direct and indirect relationships between specific leaf area, leaf nitrogen and leaf gas exchange. Effects of irradiance and nutrient supply. Ann Bot 88:915–927

    Article  Google Scholar 

  • Niinemets Ü, Kull K (2003) Leaf structure vs. nutrient relationships vary with soil conditions in temperate shrubs and trees. Acta Oecol 24:209–219

    Article  Google Scholar 

  • Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18:137–149

    Article  Google Scholar 

  • Paula S, Pausas JG (2006) Leaf traits and resprouting ability in the Mediterranean basin. Funct Ecol 20:941–947

    Article  Google Scholar 

  • Pekin BK, Boer MM, Macfarlane C, Grierson PF (2009) Impacts of increased fire frequency and aridity on eucalypt forest structure, biomass and composition in southwest Australia. For Ecol Man 258:2136–2142

    Article  Google Scholar 

  • Pekin BK, Wittkuhn RS, Boer MM, Macfarlane C, Grierson PF (2011) Plant functional traits along environmental gradients in seasonally dry and fire-prone ecosystem. J Veg Sci 22:1009–1020

    Article  Google Scholar 

  • Peñuelas J, Sardans J, Ogaya R, Estiarte M (2008) Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: effect of simulated climate change. Pol J Ecol 56:613–622

    Google Scholar 

  • Peñuelas J, Terradas J, Lloret F (2011) Solving the conundrum of plant species coexistence: water in space and time matters most. New Phytol 189:5–8

    Article  PubMed  Google Scholar 

  • Pérez-Ramos IM, Zavala MA, Marañón T, Díaz-Villa MD, Valladares F (2008) Dynamics of understorey herbaceous plant diversity following shrub clearing of cork oak forests: a five-year study. For Ecol Manag 255:3242–3253

    Article  Google Scholar 

  • Pérez-Ramos IM, Gómez-Aparicio L, Villar R, García LV, Marañón T (2010) Seedling growth and morphology of three oak species along field resource gradients and seed mass variation: a seedling age-dependent response. J Veg Sci 21:419–437

    Article  Google Scholar 

  • Pontes LDS, Soussana JF, Louault F, Andueza D, Carrère P (2007) Leaf traits affect the above-ground productivity and quality of pasture grasses. Funct Ecol 21:844–853

    Article  Google Scholar 

  • Poorter H, Garnier E (1999) Ecological significance of inherent variation in relative growth rate and its components. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology. Marcel Dekker, New York, pp 81–120

    Google Scholar 

  • Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588

    Article  PubMed  Google Scholar 

  • Quilchano C, Marañón T, Pérez-Ramos IM, Noejovich L, Valladares F, Zavala MA (2008) Patterns and ecological consequences of abiotic heterogeneity in managed cork oak forests of Southern Spain. Ecol Res 23:127–139

    Article  Google Scholar 

  • Reich PB, Uhl C, Walters MB, Ellsworth DS (1991) Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species. Oecologia 86:16–24

    Article  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS, Vose JM, Volin JC, Gresham C, Bowman WD (1998) Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia 114:471–482

    Article  Google Scholar 

  • Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999) Generality of leaf trait relationships: a test across six biomes. Ecology 80:1955–1969

    Article  Google Scholar 

  • Ruíz-Robleto J, Villar R (2005) Relative growth rate and biomass allocation in ten woody species with different leaf longevity using phyllogenetic independent contrasts (PICs). Plant Biol 7:484–494

    Article  PubMed  Google Scholar 

  • Rusch GM, Skarpe C, Halley DJ (2009) Plant traits link hypothesis about resource-use and response to herbivory. Basic Appl Ecol 10:466–474

    Article  CAS  Google Scholar 

  • Sack L, Grubb PJ, Marañón T (2003) The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest understories in southern Spain. Plant Ecol 168:139–163

    Article  Google Scholar 

  • Shipley B, Lechowicz MJ, Wright I, Reich PB (2006) Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology 87:535–541

    Article  PubMed  Google Scholar 

  • Soil Survey Staff (2006) Keys to soil taxonomy, 10th ed.USDA, Natural Resources Conservation Service, Washington, DC

  • Sonnier G, Shipley B, Navas ML (2010) Quantifying relationships between traits and explicitly measured gradients of stress and disturbance in early successional plant communities. J Veg Sci 21:1014–1024

    Article  Google Scholar 

  • Sparks DL (1996) Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science Society of America and American Society of Agronomy, Madison, Wisconsin, USA

  • Talavera S, Gibbs PE (1999) Teline. In: Castroviejo S et al (eds) Flora Iberica, CSIC, Madrid, Spain, Vol 7, pp 141–147

  • Urbieta I, Zavala MA, Marañón T (2008) Human and non-human determinants of forest composition in southern Spain: evidence of shifts toward cork oak dominance due to management over the past century. J Biogeogr 35:1688–1700

    Article  Google Scholar 

  • Valdés B, Talavera S, Fernández-Galiano E (1987) Flora vascular de Andalucía occidental, 3 Vols. Ketres, Barcelona

    Google Scholar 

  • Villar R, Merino JA (2001) Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems. New Phytol 151:213–226

    Article  Google Scholar 

  • Villar R, Ruiz-Robleto J, de Yong Y, Poorter H (2006) Differences in construction costs and chemical composition between deciduous and evergreen woody species are small as compared to differences among families. Plant Cell Environ 29:1629–1643

    Article  PubMed  CAS  Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892

    Article  Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57:11–45

    Article  Google Scholar 

  • Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:259–291

    Article  PubMed  Google Scholar 

  • Watanabe T, Broadley MR, Jansen S, White PJ, Takada J, Satake K, Takamatsu T, Tuah SJ, Osaki M (2007) Evolutionary control of leaf element composition in plants. New Phytol 174:516–523

    Article  PubMed  CAS  Google Scholar 

  • Westman WE (1981) Factors influencing the distribution of species of California coastal sage scrub. Ecology 62:439–455

    Article  Google Scholar 

  • Wilson PJ, Thompson K, Hodgson JG (1999) Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol 143:155–162

    Article  Google Scholar 

  • Wright IJ, Westoby M (2001) Understanding seedling growth relationships through specific leaf area and leaf nitrogen concentration: generalisations across growth forms and growth irradiance. Oecologia 127:21–29

    Article  Google Scholar 

  • Wright IJ, Westoby M (2002) Leaves at low versus high rainfall: coordination of structure, lifespan and physiology. New Phytol 155:403–416

    Article  Google Scholar 

  • Wright IJ, Groom PK, Lamont BB, Poot P, Prior LD, Reich PB, Schulze ED, Veneklaas EJ, Westoby M (2004a) Leaf trait relationships in Australian plant species. Funct Plant Biol 31:551–558

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004b) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  PubMed  CAS  Google Scholar 

  • Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005) Assessing the generality of global leaf trait relationships. New Phytol 166:485–496

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Consejería de Medio Ambiente (Andalusian Government) and Marco Antonio Tena, then Director of Los Alcornocales Natural Park, for the facilities and support to carry out our field work. We are grateful to Eduardo Gutiérrez, Marga Santaella and Ramón Redondo for field and/or lab assistance, to José Manuel Murillo, Lourens Poorter and three anonymous reviewers for their comments on the manuscript. This study was supported by a FPI-MEC grant to CA and a postdoctoral-MEC grant to MTD, by the Spanish MEC projects DINAMED (CGL2005-5830-C03-01 and −02) INTERBOS (CGL2008-4503-C03-01 and −02) and DIVERBOS (CGL2011-30285-C02-01 and 02), and European FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodoro Marañón.

Additional information

Responsible Editor: Hans Lambers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 796 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domínguez, M.T., Aponte, C., Pérez-Ramos, I.M. et al. Relationships between leaf morphological traits, nutrient concentrations and isotopic signatures for Mediterranean woody plant species and communities. Plant Soil 357, 407–424 (2012). https://doi.org/10.1007/s11104-012-1214-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1214-7

Keywords

Navigation