Skip to main content

Advertisement

Log in

Different plant traits affect two pathways of riparian nitrogen removal in a restored freshwater wetland

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

A Commentary to this article was published on 23 January 2013

Abstract

Background & aims

Plants may have dissimilar effects on ecosystem processes because they possess different attributes. Given increasing biodiversity losses, it is important to understand which plant traits are key drivers of ecosystem functions. To address this question, we studied the response of two ecosystem functions that remove nitrogen (N) from wetland soils, the accumulation of N in plant biomass and denitrification potential (DNP), to variation in plant trait composition.

Methods

Our experiment manipulated plant composition in a riparian wetland. We determined relative importance of plant traits and environmental variables as predictors of each ecosystem function.

Results

We demonstrate that Water Use Efficiency (WUE) had a strong negative effect on biomass N. Root porosity and belowground biomass were negatively correlated with DNP. Trait ordination indicated that WUE was largely orthogonal to traits that maximized DNP.

Conclusions

These results indicate that plant species with different trait values are required to maintain multiple ecosystem functions, and provide a more mechanistic, trait-based link between the recent findings that higher biodiversity is necessary for multi-functionality. While we selected plant traits based on ecological theory, several of the plant traits were not good predictors of each ecosystem function suggesting the ecological theory linking traits to function is incomplete and requires strengthening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AGB:

aboveground biomass

AGCN:

aboveground biomass carbon to nitrogen ratio

BEF:

biodiversity and ecosystem function

BGB:

belowground biomass

BGCN:

belowground biomass carbon to nitrogen ratio

BGR:

Below-ground Rooting Ratio

C:

carbon

CO2 :

carbon dioxide

DEA:

Denitrification Enzyme Assay

DNP:

denitrification potential

N:

nitrogen

NH4-N:

extractable ammonium

NO3-N:

extractable nitrate + nitrite

POR:

root porosity

SEM:

structural equation modeling

SLA:

specific leaf area

SRL:

specific root length

WUE:

water use efficiency

References

  • Arbuckle JL 1995 Amos User’s Guide 7.0. Amos Development Corporation, Spring House, PA.

  • Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156

    Article  PubMed  Google Scholar 

  • Barden LS (1987) Invasion of Microstegium-Vimineum (Poaceae), an Exotic, Annual, Shade-Tolerant, C-4 Grass, into a North-Carolina Floodplain. Am Midl Nat 118:40–45

    Article  Google Scholar 

  • Bardgett RD, Mawdsley JL, Edwards S, Hobbs PJ, Rodwell JS, Davies WJ (1999) Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Funct Ecol 13:650–660

    Article  Google Scholar 

  • Brady NC, Weil RR (1999) The Nature and Properties of Soils. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Burke IC, Lauenroth WK, Vinton MA, Hook PB, Kelly RH, Epstein HE, Aguiar MR, Robles MD, Aguilera MO, Murphy KL, Gill RA (1998) Plant-soil interactions in temperate grasslands. Biogeochemistry 42:121–143

    Article  Google Scholar 

  • Byrne B M 2010 Structural Equation Modeling with AMOS: Basic concepts, applications, and programming. Routledge, New York, NY, U.S.A.

  • Callaway JC, Sullivan G, Zedler JB (2003a) Species-Rich Plantings Increase biomass and Nitrogen Accumulation in a Wetland Restoration Experiment. Ecol Appl 13:1626–1639

    Article  Google Scholar 

  • Callaway RM, Pennings SC, Richards CL (2003b) Phenotypic plasticity and interactions among plants. Ecology 84:1115–1128

    Article  Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992

    Article  PubMed  CAS  Google Scholar 

  • Cavigelli MA, Robertson GP (2000) The functional significance of denitrifier community composition in a terrestrial ecosystem. Ecology 81:1402–1414

    Article  Google Scholar 

  • Cavigelli MA, Robertson GP (2001) Role of denitrifier diversity in rates of nitrous oxide consumption in a terrestrial ecosystem. Soil Biol Biochem 33:297–310

    Article  CAS  Google Scholar 

  • Chapin FS (2003) Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change. Ann Bot 91:455–463

    Article  PubMed  Google Scholar 

  • Chapin FS III, Reynolds HL, D’Antonio CM, Eckhart VM (1996) The functional role of species in terrestrial ecosystems. In: Walker B, Steffan W (eds) Global Change and Terrestrial Ecosystems. Cambridge University Press, Cambridge, U.K, pp 403–428

    Google Scholar 

  • Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Diaz S (2000) Consequences of changing biodiversity. Nature 405:234–242

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Perez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Diaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Craine JM, Tilman D, Wedin D, Reich P, Tjoelker M, Knops J (2002) Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. Funct Ecol 16:563–574

    Article  Google Scholar 

  • Cronk JK and Fennessy MS 2001 Adaptations to Growth Conditions in Wetlands. In Wetland Plants: Biology and Ecology. pp 87-145. Lewis Publishers, Boca Raton.

  • Crush JR (1998) Effect of different forage plants on denitrification potential of Horotiu soil. N Z J Agric Res 41:421–426

    Article  CAS  Google Scholar 

  • Culley JLB (1993) Density and Compressibility. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis Publishers, Boca Raton, FL, pp 529–539

    Google Scholar 

  • Diaz S (2001) Ecosystem Function, Measurement, Terrestrial communities. In: Levin SA (ed) Encyclopedia of Biodiversity. Academic, San Diego, pp 321–344

    Chapter  Google Scholar 

  • Diaz S, Cabido M (1997) Plant functional types and ecosystem function in relation to global change. J Veg Sci 8:463–474

    Google Scholar 

  • Diaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Marti G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Diez P, Funes G, Hamzehee B, Khoshnevi M, Perez-Harguindeguy N, Perez-Rontome MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martinez M, Romo-Diez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: Evidence from three continents. J Veg Sci 15:295–304

    Google Scholar 

  • Drury CF, McKenney DJ, Findlay WI (1991) Relationships between Denitrification, Microbial Biomass and Indigenous Soil Properties. Soil Biol Biochem 23:751–755

    Article  Google Scholar 

  • Duffy JE (2009) Why biodiversity is important to the functioning of real-world ecosystems. Front Ecol Environ 7:437–444

    Article  Google Scholar 

  • Dukes JS (2000) Will the increasing atmospheric CO2 concentration affect the success of invasive species? In: Mooney HA, Hobbs RJ (eds) In Invasive species in a changing world. Island Press, Washington, D.C, pp 95–113

    Google Scholar 

  • Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant-soil system. Annu Rev Environ Res 30:75–115

    Article  Google Scholar 

  • Engelhardt KA, Ritchie ME (2001) Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411:687–689

    Article  PubMed  CAS  Google Scholar 

  • Ettema CH, Lowrance R, Coleman DC (1999) Riparian soil response to surface nitrogen input: temporal changes in denitrification, labile and microbial C and N pools, and bacterial and fungal respiration. Soil Biol Biochem 31:1609–1624

    Article  CAS  Google Scholar 

  • Eviner VT (2004) Plant traits that influence ecosystem processes vary independently among species. Ecology 85:2215–2229

    Article  Google Scholar 

  • Eviner VT, Chapin FS (2003) Functional matrix: A conceptual framework for predicting multiple plant effects on ecosystem processes. Annu Rev Ecol Evol Syst 34:455–485

    Article  Google Scholar 

  • Farrar J, Hawes M, Jones D, Lindow S (2003) How roots control the flux of carbon to the rhizosphere. Ecology 84:827–837

    Article  Google Scholar 

  • Fornara DA, Tilman D (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96:314–322

    Article  CAS  Google Scholar 

  • Fornara DA, Tilman D, Hobbie SE (2009) Linkages between plant functional composition, fine root processes and potential soil N mineralization rates. J Ecol 97:48–56

    Article  CAS  Google Scholar 

  • Gamfeldt L, Hillebrand H, Jonsson PR (2008) Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89:1223–1231

    Article  PubMed  Google Scholar 

  • Grace JB (2006) Structural Equation Modeling and Natural Systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910

    Article  Google Scholar 

  • Groffman PM (1987) Nitrification and denitrification in soil - A comparison of enzyme assay, incubation and enumeration methods. Plant Soil 97:445–450

    Article  CAS  Google Scholar 

  • Groffman PM (1994) Denitrification in Freshwater Wetlands. Curr Topics Wetland Biogeochem 1:15–35

    Google Scholar 

  • Groffman PM, Crawford MK (2003) Denitrification potential in urban riparian zones. J Environ Qual 32:1144–1149

    Article  PubMed  CAS  Google Scholar 

  • Groffman PM, Axelrod EA, Lemunyon JL, Sullivan WM (1991) Denitrification in grass and forest vegetated filter strips. J Environ Qual 20:671–674

    Article  CAS  Google Scholar 

  • Groffman PN, Holland EA, Myrold DD, Robertson GP, Zou X (1999) Denitrification. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard Soil Methods for Long-Term Ecological Research. Oxford University Press, Oxford, U.K, pp 272–288

    Google Scholar 

  • Hall K 2003 Recommended Native Plant Species for Stream Restoration in North Carolina. North Carolina Stream Restoration Institute, North Carolina State University, Raleigh.

  • Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448:188–191

    Article  PubMed  CAS  Google Scholar 

  • Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Joshi J, Jumpponen A, Korner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127

    Article  PubMed  CAS  Google Scholar 

  • Hernandez ME, Mitsch WJ (2007) Denitrification potential and organic matter as affected by vegetation community, wetland age, and plant introduction in created wetlands. J Environ Qual 36:333–342

    Article  PubMed  CAS  Google Scholar 

  • Hill AR (1996) Nitrate removal in stream riparian zones. J Environ Qual 25:743–755

    Article  CAS  Google Scholar 

  • Hill AR, Cardaci M (2004) Denitrification and organic carbon availability in riparian wetland soils and subsurface sediments. Soil Sci Soc Am J 68:320–325

    Article  CAS  Google Scholar 

  • Hobbie SE (1992) Effects of Plant-Species on Nutrient Cycling. Trends Ecol Evol 7:336–339

    Article  PubMed  CAS  Google Scholar 

  • Hooper DU, Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Science 277:1302–1305

    Article  CAS  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Technical Summary. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate Change 2001: the Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 22–83

    Google Scholar 

  • Hume NP, Fleming MS, Horne AJ (2002) Denitrification potential and carbon quality of four aquatic plants in wetland microcosms. Soil Sci Soc Am J 66:1706–1712

    Article  CAS  Google Scholar 

  • Jensen CR, Luxmoore RJ, Vangundy SD, Stolzy LH (1969) Root Air Space Measurements by a Pycnometer Method. Agron J 61:474

    Article  Google Scholar 

  • Kerkhoff AJ, Enquist BJ, Elser JJ, Fagan WF (2005) Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecol Biogeogr 14:585–598

    Article  Google Scholar 

  • Kirby R M 1971 Soil Survey of Durham County, North Carolina. USDA Soil Conservation Service.

  • Knops JMH, Bradley KL, Wedin DA (2002) Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecol Lett 5:454–466

    Article  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  • Lin YF, Jing SR, Wang TW, Lee DY (2002) Effects of macrophytes and external carbon sources on nitrate removal from Zgroundwater in constructed wetlands. Environ Pollut 119:413–420

    Article  PubMed  CAS  Google Scholar 

  • Lowrance R, Hubbard RK (2001) Denitrification from a swine lagoon overland flow treatment system at a pasture-riparian zone interface. J Environ Qual 30:617–624

    Article  PubMed  CAS  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • Martin K, Parsons LL, Murray RE, Smith MS (1988) Dynamics of soil denitrifier populations - Relationships between enzyme-activity, most-probably-number counts, and actual N-gas loss. Appl Environ Microbiol 54:2711–2716

    PubMed  CAS  Google Scholar 

  • Maynard DG, Kalra YP (1993) Nitrate and Exchangeable Ammonium Nitrogen. In: Carter MR (ed) Soil Sampling and Methods of Analysis. Lewis Publishers, Boca Raton, USA, pp 25–38

    Google Scholar 

  • McCune B and Grace J B 2002 Structural Equation Modeling. In Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, Oregon.

  • McCune B and Mefford MJ 1999 PC-ORD. Multivariate Analysis of Ecological Data. Version 4.41. MjM Software, Gleneden Beach, Oregon, U.S.A.

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • McGill BM, Sutton-Grier AE, Wright JP (2010) Plant trait diversity buffers variability in denitrification potential over changes in season and soil conditions. PLoS One 5:e11618

    Article  PubMed  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and Lignin Control of Hardwood Leaf Litter Decomposition Dynamics. Ecology 63:621–626

    Article  CAS  Google Scholar 

  • Millennium Ecosystem Assessment 2005 Ecosystems and Human Well-Being: Biodiversity Synthesis. World Resources Institute.

  • Mitsch WJ, Gosselink JG (2000) Wetlands, 3rd edn. John Wiley and Sons, Inc., New York, NY, USA

    Google Scholar 

  • Moraghan JT, Buresh R (1977) Correction for Dissolved Nitrous-Oxide in Nitrogen Studies. Soil Sci Soc Am J 41:1201–1202

    Article  CAS  Google Scholar 

  • Naeem S, Wright JP (2003) Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecol Lett 6:567–579

    Article  Google Scholar 

  • Owensby CE, Ham JM, Knapp AK, Auen LM (1999) Biomass production and species composition change in a tallgrass prairie ecosystem after long-term exposure to elevated atmospheric CO2. Global Change Biol 5:497–506

    Article  Google Scholar 

  • Parsons LL, Murray RE, Smith MS (1991) Soil denitrification dynamics - Spatial and temporal variations of enzyme-activity, populations, and nitrogen gas loss. Soil Sci Soc Am J 55:90–95

    Article  CAS  Google Scholar 

  • Patra AK, Abbadie L, Clays-Josserand A, Degrange V, Grayston SJ, Guillaumaud N, Loiseau P, Louault F, Mahmood S, Nazaret S, Philippot L, Poly F, Prosser JI, Le Roux X (2006) Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils. Environ Microbiol 8:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Pinay G, Barbera P, Carreras-Palou A, Fromin N, Sonie L, Couteaux MM, Roy J, Philippot L, Lensi R (2007) Impact of atmospheric CO2 and plant life forms on soil microbial activities. Soil Biol Biochem 39:33–42

    Article  CAS  Google Scholar 

  • R Development Core Team (2008) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Reddy KR, Patrick WH, Lindau CW (1989) Nitrification-Denitrification at the Plant Root-Sediment Interface in Wetlands. Limnol Oceanogr 34:1004–1013

    Article  CAS  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1992) Leaf Life-Span in Relation to Leaf, Plant, and Stand Characteristics among Diverse Ecosystems. Ecol Monogr 62:365–392

    Article  Google Scholar 

  • Reich PB, Tjoelker MG, Machado JL, Oleksyn J (2006) Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439:457–461

    Article  PubMed  CAS  Google Scholar 

  • Schipper LA, Harfoot CG, McFarlane PN, Cooper AB (1994) Anaerobic decomposition and denitrification during plant decomposition in an organic soil. J Environ Qual 23:923–928

    Article  Google Scholar 

  • Smith MS, Tiedje JM (1979) Phases of denitrification following oxygen depletion in soil. Soil Biol Biochem 11:261–267

    Article  CAS  Google Scholar 

  • Steers RJ, Funk JL, Allen EB (2011) Can resource-use traits predict native vs. exotic plant success in carbon amended soils? Ecol Appl 21:1211–1224

    Article  PubMed  Google Scholar 

  • Steltzer H, Bowman WD (1998) Differential influence of plant species on soil nitrogen transformations within moist meadow Alpine tundra. Ecosystems 1:464–474

    Article  CAS  Google Scholar 

  • Storer DA (1984) A simple high sample volume ashing procedure for determination of soil organic matter. Communications in Soil Sciene and Plant Analysis 15:759–772

    Article  CAS  Google Scholar 

  • Suding KN, Lavorel S, Chapin FS, Cornelissen JHC, Diaz S, Garnier E, Goldberg D, Hooper DU, Jackson ST, Navas ML (2008) Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biol 14:1125–1140

    Article  Google Scholar 

  • Sutherst RW (2000) Climate change and invasive species: A conceptual framework. In: Mooney HA, Hobbs RJ (eds) Invasive species in a changing world. Island Press, Washington, D.C, pp 211–240

    Google Scholar 

  • Sutton-Grier AE, Megonigal JP (2011) Plant species traits regulate methane production in freshwater wetland soils. Soil Biol Biochem 43:413–420

    Article  CAS  Google Scholar 

  • Sutton-Grier AE, Ho M, Richardson CJ (2009) Organic amendments improve soil conditions and denitrification in a restored riparian wetland. Wetlands 29:343–352

    Article  Google Scholar 

  • Sutton-Grier AE, Wright JP, McGilll BM, Richardson CJ (2011) Environmental Conditions Influence the Plant Functional Diversity Effect on Potential Denitrification. PLoS One 6:e16584

    Article  PubMed  CAS  Google Scholar 

  • Templer P, Findlay S, Lovett G (2003) Soil microbial biomass and nitrogen transformations among five tree species of the Catskill Mountains, New York, USA. Soil Biol Biochem 35:607–613

    Article  CAS  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ricthie M, Siemann E (1997) The Influence of Functional Diversity and Composition on Ecosystem Processes. Science 277:1300–1302

    Article  CAS  Google Scholar 

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and Productivity in a Long-Term Grassland Experiment. Science 294:843–845

    Article  PubMed  CAS  Google Scholar 

  • Verville JH, Hobbie SE, Chapin FS, Hooper DU (1998) Response of tundra CH4 and CO2 flux to manipulation of temperature and vegetation. Biogeochemistry 41:215–235

    Article  CAS  Google Scholar 

  • Vitousek PM (1997) Human domination of Earth’s ecosystems (vol 277, pg 494, 1997). Science 278:21–21

    CAS  Google Scholar 

  • Wardle DA (2002) Communities and Ecosystems: Linking the Aboveground and Belowground Components. Princeton University Press, Princeton

    Google Scholar 

  • Wardle DA, Barker GM, Bonner KI, Nicholson KS (1998) Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems? J Ecol 86:405–420

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  PubMed  CAS  Google Scholar 

  • Wedin DA, Tilman D (1990) Species Effects on Nitrogen Cycling - a Test with Perennial Grasses. Oecologia 84:433–441

    Google Scholar 

  • Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–268

    Article  PubMed  Google Scholar 

  • Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W, Boon N (2009) Initial community evenness favours functionality under selective stress. Nature 458:623–626

    Article  PubMed  CAS  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  PubMed  CAS  Google Scholar 

  • Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: Are there any links? Ecology 84:2042–2050

    Article  Google Scholar 

Download references

Acknowledgments

We especially wish to thank Eileen Thorsos for very helpful discussion of hypotheses and data analysis, and Jennifer Funk for comments on the manuscript. We would like to thank Paul Heine, Wes Willis, Joseph Lozier, Tracy Hamm, Amanda Ward, Sarah Eminhizer, Nate Emery, Josie Bamford, Serwaah Agyapong, Aileen Malloy, Lauren Kinsman, Amy Hammontree, Erin Brosnan, Doug Gorecki, Jocelyn Tutak, Youngeun Cho, Ahmed Farawi, and Tisha Johnson for help with sample processing. We also thank the many people who helped us with field work: Dr. Mengchi Ho, Dr. James Pahl, Mike Osland, Jen Morse, Julie DeMeester, Amani McHugh, Arlene Mendoza, Joseph Sexton, Eileen Thorsos, Dawoon Jung, and Nancy Morgans. This work was supported by NSF Grant DEB0508763, an NSF Graduate Research Fellowship, an American Fellowship from the Association of University Women Educational Foundation to A.E.S., a Society of Wetland Scientist Student Research Grant, the Duke Wetlands Center Case Study Endowment, and a grant from the USDA Natural Resources Conservation Service. A. E. S. was also partially supported by a Smithsonian Fellowship from the Smithsonian Environmental Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Sutton-Grier.

Additional information

Responsible Editor: Jeff R. Powell.

Appendix A: Site denitrification potential (DNP) from soil samples collected in 2006

Electronic supplementary material

ESM 1

(DOC 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutton-Grier, A.E., Wright, J.P. & Richardson, C.J. Different plant traits affect two pathways of riparian nitrogen removal in a restored freshwater wetland. Plant Soil 365, 41–57 (2013). https://doi.org/10.1007/s11104-011-1113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-1113-3

Keywords

Navigation