Skip to main content
Log in

The significance of D-amino acids in soil, fate and utilization by microbes and plants: review and identification of knowledge gaps

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

D-amino acids are far less abundant in nature than L-amino acids. Both L- and D-amino acids enter soil from different sources including plant, animal and microbial biomass, antibiotics, faeces and synthetic insecticides. Moreover, D-amino acids appear in soil due to abiotic or biotic racemization of L-amino acids. Both L- and D-amino acids occur as bound in soil organic matter and as “free“ amino acids dissolved in soil solution or exchangeably bound to soil colloids. D-amino acids are mineralized at slower rates compared to the corresponding L-enantiomers. Plants have a capacity to directly take up “free“ D-amino acids by their roots but their ability to utilize them is low and thus D-amino acids inhibit plant growth.

Scope

The aim of this work is to review current knowledge on D-amino acids in soil and their utilization by soil microorganisms and plants, and to identify critical knowledge gaps and directions for future research.

Conclusion

Assessment of “free“ D-amino acids in soils is currently complicated due to the lack of appropriate extraction procedures. This information is necessary for consequent experimental determination of their significance for crop production and growth of plants in different types of managed and unmanaged ecosystems. Hypotheses on occurrence of “free“ D-amino acids in soil are presented in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abe I, Nakahara T (1996) Enantiomer separation of amino acids as their N-alkyloxycarbonyl alkylamide derivatives by chiral phase. J High Resol Chromatogr 19:511–514

    CAS  Google Scholar 

  • Abe I, Nishiyama T, Nakahara T (1994) Enantiomer separation of amino acids after derivatization with alkyl chloroformates by chiral phase capillary gas chromatography. Anal Sci 10:501–504

    CAS  Google Scholar 

  • Abe W, Fujimoto N, Nishiyama T, Terada K, Nakahara T (1996) Rapid analysis of amino acid enantiomers by chiral-phase capillary gas chromatography. J Chromatogr A 722:221–227

    CAS  Google Scholar 

  • Abuarghub SM, Read DJ (1988) The biology of mycorrhiza in the Ericaceae XII. Quantitative analysis of individual “free“ amino acids in relation to time and depth in the soil profile. New Phytol 108:433–441

    CAS  Google Scholar 

  • Admiraal W, Riaux-Gobin C, Laane RWPM (1987) Interactions of ammonium, nitrate, and D- and L-amino acids in the nitrogen assimilation of two species of estuarine benthic diatoms. Mar Ecol 40:267–273

    CAS  Google Scholar 

  • Ahmad K, Khan ZI, Ashraf M, Hussain M, Valeem EE (2009) Levels of total amino acids, soluble proteins and phenolic compounds in forages in relation to requirements of ruminants grazing in the salt range (Punjab), Pakistan. Pakistan J Bot 41:1521–1526

    CAS  Google Scholar 

  • Aldag RW, Young JL (1970) D-amino acids in soil. I. Uptake and metabolism by seedling maize and ryegrass. Agron J 62:184–189

    CAS  Google Scholar 

  • Amelung W (2003) Nitrogen biomarkers and their fate in soil. J Plant Nutr Soil Sci 166:677–686

    CAS  Google Scholar 

  • Amelung W, Zhang X (2001) Determination of amino acid enantiomers in soils. Soil Biol Biochem 33:553–562

    CAS  Google Scholar 

  • Amelung W, Zhang X, Flach KW (2006) Amino acids in grassland soils: climatic effect on concentrations and chirality. Geoderma 130:207–217

    CAS  Google Scholar 

  • Bååth E, Anderson T-H (2003) Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem 35:955–963

    Google Scholar 

  • Bada JL (1971) Kinetics of the nonbiological decomposition and racemization of amino acids in natural waters. In: Hem JD (ed) Nonequilibrium systems in natural water chemistry. American Chemical Society, Washington, pp 309–331

    Google Scholar 

  • Banerjee AB, Bose SK (1963) Amino-acid configuration of mycobacillin. Nature 200:471

    PubMed  CAS  Google Scholar 

  • Bayer E, Nicholson G, Frank H (1987) Separation of amino acid enantiomers using chiral polysiloxanes: quantitative analysis by enantiomer labelling. In: Gehrke ChW, Kuo KCT (eds) Amino acid analysis by gas chromatography. CRC Press, Boca Raton, pp 46–48

    Google Scholar 

  • Beavis J, Mott CJB (1996) Effects of land use on the amino acid composition of soils: 1. Manured and unmanured soils from the broadbalk continuous wheat experiment, Rothamsted, England. Geoderma 72:259–270

    Google Scholar 

  • Beavis J, Mott CJB (1999) Effect of land use on the amino acid composition of soils: 2. Soils from the park grass experiment and Broadbalk Wilderness, Rothamsted, England. Geoderma 91:173–190

    CAS  Google Scholar 

  • Bernhard-Reversat F, Loumeto JJ, Laclau JP (2001) Litterfall, litter quality and decomposition changes with eucalypt hybrids and plantation age. In: Bernhard-Reversat F (ed) Effect of exotic tree plantations on plant diversity and biological soil fertility in the Congo Savanna: with special reference to eucalypts. CIFOR Bogor, Indonesia, pp 23–29

    Google Scholar 

  • Bertrand M, Chabin A, Brack A, Westall F (2008) Separation of amino acid enantiomers VIA chiral derivatization and non-chiral gas chromatography. J Chromatogr A 1180:131–137

    PubMed  CAS  Google Scholar 

  • Bhadauria T, Saxena KG (2010) Role of earthworms in soil fertility maintenance through the production of biogenic structures. Appl Environ Soil Sci Article 2010:ID 816073, pp 7.

  • Bhattacharyya SK, Banerjee AB (1974) D-amino acids in the cell pool of bacteria. Folia Microbiol (Praha) 19:43–50

    CAS  Google Scholar 

  • Binh CT, Heuer H, Gomes NC, Kotzerke A, Fulle M, Wilke BM, Schloter M, Smalla K (2007) Short-term effects of amoxicillin on bacterial communities in manured soil. FEMS Microbiol Ecol 62:290–302

    PubMed  CAS  Google Scholar 

  • Blagodatskaya EV, Anderson T-H (1998) Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils. Soil Biol Biochem 30:1269–1274

    CAS  Google Scholar 

  • Bollard EG (1966) A comparative study of the ability of organic nitrogenous compounds to serve as sole sources of nitrogen for growth of plants. Plant Soil 25:153–166

    CAS  Google Scholar 

  • Bremner JM (1950) The amino-acid composition of the protein material in soil. Biochem J 47:538–542

    PubMed  CAS  Google Scholar 

  • Brodowski S, Amelung W, Lobe I, du Preez CC (2004) Losses and biochemical cycling of soil organic nitrogen with prolonged arable cropping in the South African Highveld—evidence from D- and L-amino acids. Biogeochemistry 71:17–42

    CAS  Google Scholar 

  • Brückner H, Fujii N (2010a) Free and peptide-bound D-amino acids in chemistry and life sciences. Chem Biodivers 7:1333–1336

    PubMed  Google Scholar 

  • Brückner H, Fujii N (2010b) D-Amino acids in chemistry, life sciences, and biotechnology. Wiley-VCH. p 392.

  • Brückner H, Schieber A (2000) Determination of free D-amino-acids in mammalia by chiral gas chromatography–mass spectrometry. J High Resolut Chrom 23:576–582

    Google Scholar 

  • Brückner H, Schieber A (2001) Ascertainment of D-amino acids in germ-free, gnotobiotic and normal laboratory rats. Biomed Chromatogr 15:257–262

    PubMed  Google Scholar 

  • Brückner H, Westhauser T (2003) Chromatographic determination of L- and D- amino acids in plants. Amino Acids 24:43–55

    PubMed  Google Scholar 

  • Brückner H, Haasmann S, Friedrich A (1994) Quantification of D-amino acids in human urine using GC-MS and HPLC. Amino Acids 6:205–211

    Google Scholar 

  • Busse MD, Sanchez FG, Ratcliff AW, Butnor JR, Carter EA, Powers RF (2009) Soil carbon sequestration and changes in fungal and bacterial biomass following incorporation of forest residues. Soil Biol Biochem 41:220–227

    CAS  Google Scholar 

  • Cava F, Lam H, de Pedro ME, Waldor MK (2011) Emerging knowledge of regulatory roles of D-amino acids in bacteria: review. Cell Mol Life Sci 68:817–831

    PubMed  CAS  Google Scholar 

  • Chalot M, Brun A, Botton B, Söderström B (1996) Kinetics, energetics and specificity of a general amino acid transporter from the ectomycorrhizal fungus Paxillus involutus. Microbiology 142:1749–1756

    CAS  Google Scholar 

  • Chapin A, Rule A, Gibson K, Buckley T, Schwab K (2005) Airborne multidrug-resistant bacteria isolated from a concentrated swine feeding operation. Environ Health Perspect 113:137–142

    PubMed  Google Scholar 

  • Chee-Sanford JC, Mackie RI, Koike S, Krapac IG, Lin YF, Yannarell AC, Maxwell S, Aminov RI (2009) Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J Environ Qual 38:1086–1108

    PubMed  CAS  Google Scholar 

  • Christian T, Schneider RJ, Färber HA, Skutlarek D, Meyer MT, Goldbach HE (2003) Determination of antibiotic residues in manure, woil, and surface waters. Acta Hydrochim Hydrobiol 31:36–44

    CAS  Google Scholar 

  • Clark JE, Hellgren EC, Parsons JL, Jorgensen EE, Engle DM, Leslie DM Jr (2005) Nitrogen outputs from fecal and urine deposition of small mammals: implications for nitrogen cycling. Oecologia 144:447–455

    PubMed  Google Scholar 

  • Csapó J, Csapó-Kiss Z, Csapó J Jr (1998) Use of amino acids and their racemisation for age determination in archaeometry. Trends Anal Chem 17:140–148

    Google Scholar 

  • Davidonis GH, Hamilton RH, Vallejo RP, Buly R, Mumma RO (1982) Biological properties of D-amino acid conjugates of 2,4-D. Plant Physiol 70:357–360

    PubMed  CAS  Google Scholar 

  • de Miranda J, Panizzutti R, Foltyn VN, Wolosker H (2002) Cofactors of serine racemase that physiologically stimulate the synthesis of the N-methyl-D-aspartate (NMDA) receptor coagonist D-serine. PNAS 99:14542–14547

    PubMed  Google Scholar 

  • Dolliver H, Gupta S, Noll S (2008) Antibiotic degradation during manure composting. J Environ Qual 37:1245–1253

    PubMed  CAS  Google Scholar 

  • Elmund GK, Morrison SM, Grant DW, Nevins MP Sr (1971) Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste. Bull Environ Toxicol 6:129–132

    CAS  Google Scholar 

  • Erikson O, Hertzberg M, Näsholm T (2004) A conditional marker gene allowing both positive and negative selection in plants. Nat Biotechnol 22:455–458

    PubMed  CAS  Google Scholar 

  • Erikson O, Hertzberg M, Näsholm T (2005) The dsdA gene from Escherichia coli provides a novel selectable marker for plant transformation. Plant Mol Biol 57:425–433

    PubMed  CAS  Google Scholar 

  • Fein JE, MacLeod RA (1975) Characterization of neutral amino acid transport in a marine pseudomonad. J Bacteriol 124:1177–1190

    PubMed  CAS  Google Scholar 

  • Formanek P, Klejdus B, Vranova V (2005) Bio-available amino acids extraction from soil by demineralized water and 0.5 M ammonium acetate. Amino Acids 28:427–429

    PubMed  CAS  Google Scholar 

  • Formanek P, Rejsek K, Vranova V, Marek MV (2008a) Bio-available amino acids and mineral nitrogen forms in soil of moderately mown and abandoned mountain meadows. Amino Acids 34:301–306

    PubMed  CAS  Google Scholar 

  • Formanek P, Rejsek K, Vranova V, Klejdus B (2008b) Selected diamino acids in soils of differently managed mountain meadow and forest ecosystems: Assessment of their role in the ecosystem nutrition. In: Schäfer HA, Wohlbier LM (eds) Diamino amino acids. Nova, New York, pp 182–218

    Google Scholar 

  • Forsum O, Svennerstam H, Ganeteg U, Näsholm T (2008) Capacities and constraints of amino acid utilization in Arabidopsis. New Phytol 179:1058–1069

    PubMed  CAS  Google Scholar 

  • Frahn JL, Illman RJ (1975) The occurrence of D-alanine and D-alanyl-D-alanine in Phalaris tuberosa. Phytochem 14:1464–1465

    CAS  Google Scholar 

  • Frank H, Woi wode W, Nicholson G, Bayer E (1981) Determination of the rate of acidic catalysed racemization of protein amino acids. Liebigs Ann Chem 354–365.

  • Friedel JK, Scheller E (2002) Composition of hydrolysable amino acids in soil organic matter and soil microbial biomass. Soil Biol Biochem 34:315–325

    CAS  Google Scholar 

  • Friedman M (1999) Chemistry, nutrition, and microbiology of D-amino acids. J Agric Food Chem 47:3457–3479

    PubMed  CAS  Google Scholar 

  • Friedman M (2010) Origin, microbiology, nutrition, and pharmacology of D-amino acids. Chem Biodivers 7:1491–1530

    PubMed  CAS  Google Scholar 

  • Frohlich DR, Wells MA (2001) Peptide amphipathy: a new strategy in design of potential insecticides. Int J Pept Protein Res 37:2–6

    Google Scholar 

  • Fuchs SA, Berger R, Klomp LWJ, de Koning TJ (2005) D-amino acids in the central nervous system in health and disease: minireview. Mol Genet Metab 85:168–180

    PubMed  CAS  Google Scholar 

  • Fujii N (2002) D-amino acids in living higher organisms. Origins Life Evol Biosph 32:103–127

    CAS  Google Scholar 

  • Fujitani Y, Nakajima N, Ishihara K, Oikawa T, Ito K, Sugimoto M (2006) Molecular and biochemical characterization of a serine racemase from Arabidopsis thaliana. Phytochemistry 67:668–674

    PubMed  CAS  Google Scholar 

  • Fukuda K, Tokumura A, Ogaw T (1973) D-alanine in germinating Pisum sativum seedlings. Phytochem 12:2593–2595

    CAS  Google Scholar 

  • Funakoshi M, Sekine M, Katane M, Furuchi T, Yohda M, Yoshikawa T, Homma H (2008) Cloning and functional characterization of Arabidopsis thaliana D-amino acid aminotransferase-D-aspartate behaviour during germination. FEBS J 275:1188–1200

    PubMed  CAS  Google Scholar 

  • Gandolfi I, Palla G, Dossena A, Pueli S, Savadori C (1994) D-amino acids in fruit juices: a molecular marker of bacterial activity, heat treatments and shelf life. J Food Sci 59:152–154

    CAS  Google Scholar 

  • Gilley JE, Eghball B, Blumenthal JM, Baltensperger DD (1999) Runoff and erosion from interrill areas as affected by the application of manure. Trans ASAE 42:975–980

    Google Scholar 

  • Glover GI, D’Ambrosio SM, Jensen RA (1975) Versatile properties of a nonsaturatable, homogenous transport system in Bacillus subtilis: genetic, kinetic, and affinity labelling studies. PNAS 72:814–818

    PubMed  CAS  Google Scholar 

  • Gokhale DV, Bastawde KB, Patil SG, Kalkote UR, Joshi RR, Joshi RA, Ravindranathan T, Gaikwad BG, Jogdand VV, Nene S (1996) Chemoenzymatic synthesis of d(−)phenylglycine using hydantoinase of Pseudomonas desmolyticum resting cells. Enzym Microb Tech 18:353–357

    CAS  Google Scholar 

  • Gördes D, Kolukisaoglu Ü, Thurow K (2011) Uptake and conversion of D-amino acids in Arabidopsis thaliana. Amino Acids 40:553–563

    PubMed  Google Scholar 

  • Grifantini R, Pratesi C, Galli G, Grandi G (1996) Topological mapping of the cysteine residues of N-carbamyl-damino-acid amidohydrolase and their role in enzymatic activity. J Biol Chem 271:9326–9331

    PubMed  CAS  Google Scholar 

  • Griffiths BS (1990) A comparison of microbial-feeding nematodes and protozoa in the rhizosphere of different plants. Biol Fertil Soil 9:83–88

    Google Scholar 

  • Hairiah K, Sulistyani H, Suprayogo D, Purnomosidhi P, Widodo R, Widodo RH (2006) Litter layer residence time in forest and coffee agroforestry systems in Sumberjaya, West Lampung. Forest Ecol Manag 224:45–57

    Google Scholar 

  • Hamase K, Morikawa A, Zaitsu K (2002) D-Amino acids in mammals and their diagnostic value: review. J Chromatogr B 781:73–91

    CAS  Google Scholar 

  • Hart JW, Filner P (1969) Regulation of sulfate uptake by amino acids in cultured tobacco cells. Plant Physiol 44:1253–1259

    PubMed  CAS  Google Scholar 

  • Hazenberg MP, Pennock-Schroder AM, Van den Boom M, Van de Merwe JP (1984) Binding to and antibacterial effect of ampicillin, neomycin and polymyxin B on human faeces. J Hyg (Lond) 93:27–34

    CAS  Google Scholar 

  • Henry HAL, Jefferies RL (2002) Free amino acid, ammonium and nitrate concentrations in soil solutions of a grazed coastal marsh in relation to plant growth. Plant Cell Environ 25:665–675

    CAS  Google Scholar 

  • Hill PW, Farrell M, Roberts P, Farrar J, Grant H, Newsham KK, Hopkins DW, Bardgett RD, Jones DL (2011a) Soil- and enantiomer-specific metabolism of amino acids and their peptides by Antarctic soil microorganisms. Soil Biol Biochem 43:2410–2416

    CAS  Google Scholar 

  • Hill PW, Quilliam RS, DeLuca TH, Farrar J, Farrell M, Roberts P, Newsham KK, Hopkins DW, Bardgett RD, Jones DL (2011b) Acquisition and assimilation of nitrogen as peptide-bound and D-enantiomers of amino acids by wheat. PLoS One 6:1–4

    Google Scholar 

  • Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (1998) Root proliferation, soil fauna and plant nitrogen capture from nutrient-rich patches in soil. New Phytol 139:479–494

    Google Scholar 

  • Hopkins DW, Ferguson KE (1994) Substrate induced respiration in soil amended with different amino acid isomers. Appl Soil Ecol 1:75–81

    Google Scholar 

  • Hopkins DW, Isabella BL, Scott SE (1994) Relationship between microbial biomass and substrate induced respiration in soils amended with D- and L-isomers of amino acids. Soil Biol Biochem 26:1623–1627

    CAS  Google Scholar 

  • Hopkins DW, O’Dowd RW, Shiel RS (1997) Comparison of D- and L-amino acid metabolism in soils with differing microbial biomass and activity. Soil Biol Biochem 29:23–29

    CAS  Google Scholar 

  • Hosie AHF, Allaway D, Galloway CS, Dunsby HA, Poole PS (2002) Rhizobium leguminosarum Has a second general amino acid permease with unusually broad substrate specifity and high similarity to branched-chain amino acid transporters (Bra/LIV) of the ABC family. J Bacteriol 184:4071–4080

    PubMed  CAS  Google Scholar 

  • Iida T, Santa T, Toriba A, Imai K (2001) Amino acid sequence and D/L-configuration determination methods for D-amino acid-containing peptides in living organism. Biomed Chromatogr 15:319–327

    PubMed  CAS  Google Scholar 

  • Inagaki Y, Miura S, Kohzu A (2004) Effects of forest type and stand age on litterfall quality and soil N dynamics in Shikoku district, southern Japan. Forest Ecol Manag 202:107–117

    Google Scholar 

  • Ingham ER, Doyleb JD, Hendricks CW (1995) Assessing interactions between the soil foodweb and a strain of Pseudomonas putida genetically engineered to degrade 2,4-D. Appl Soil Ecol 2:263–274

    Google Scholar 

  • Isobe K, Tamauchi H, Fuhshuku K-i, Nagasawa S, Asano Y (2010) A simple enzymatic method for production of a wide variety of d-amino acids using l-amino acid oxidase from Rhodococcus sp. AIU Z-35-1. Enzyme Res 2010: Article ID 567210, pp 6.

  • Istiqomah L, Sofyan A, Damayanti E, Julendra H (2009) Amino acid profile of earthworm and earthworm meal (Lumbricus rubellus) for animal feeds stuff. J Indonesian Trop Anim Agric 34:253–257

    Google Scholar 

  • Ivarson KC, Sowden FJ (1969) Free amino acid composition of the plant root environment under field conditions. Can J Soil Sci 49:121–127

    CAS  Google Scholar 

  • Ivarson KC, Sowden FJ (1966) Effect of freezing on the free amino acids in soil. Can J Soil Sci 46:115–120

    CAS  Google Scholar 

  • Jensen LS, Christensen L, Mueller T, Nielsen NE (1997) Turnover of residual 15N-labelled fertilizer N in soil following harvest of oilseed rape (Brassica napus L.). Plant Soil 190:193–202

    CAS  Google Scholar 

  • Jilek A, Kreil G (2008) D-amino acids in animal peptides. Monatsh Chem 139:1–5

    CAS  Google Scholar 

  • Johnson RM, Pregitzer KS (2007) Concentration of sugars, phenolic acids, and amino acids in forest soils exposed to elevated atmospheric CO2 and O3. Soil Biol Biochem 39:3159–3166

    CAS  Google Scholar 

  • Johnston MM, Diven WF (1969) Studies on amino acid racemases. J Biol Chem 244:5414–5420

    PubMed  CAS  Google Scholar 

  • Jones OTG (1963) The accumulation of amino acids by fungi, with particular reference to the plant parasitic fungus Botrytis fahae. J Exp Bot 14:399

    CAS  Google Scholar 

  • Jones DL (1999) Amino acid biodegradation and its potential effects on organic nitrogen capture. Soil Biol Biochem 31:613–622

    CAS  Google Scholar 

  • Jones DL, Hodge A (1999) Biodegradation kinetics and sorption reactions of three differently charged amino acids in soil and their effects on plant organic nitrogen availability. Soil Biol Biochem 3:1331–1342

    Google Scholar 

  • Jones DL, Willett VB (2006) Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem 38:991–999

    CAS  Google Scholar 

  • Jones DL, Edwards AC, Donachie K, Darrah PR (1994) Role of proteinaceous amino acids released in root exudates in nutrient acquisition from rhizosphere. Plant Soil 158:183–192

    CAS  Google Scholar 

  • Jones DL, Owen AG, Farrar JF (2002) Simple method to enable the high resolution determination of total free amino acids in soil solutions and soil extracts. Soil Biol Biochem 34:1893–1902

    CAS  Google Scholar 

  • Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005) Dissolved organic nitrogen uptake by plants - an important N uptake pathway? Soil Biol Biochem 37:413–423

    CAS  Google Scholar 

  • Joshi N, Aga S (2009) Diversity and distribution of earthworms in a subtropical forest ecosystem in Uttarakhand, India. Nat Hist J Chulalongkorn Univ 9:21–25

    Google Scholar 

  • Ju J, Xu S, Wen J, Li G, Ohnishi K, Xue Y, Ma Y (2009) Characterization of endogenous pyridoxal 5′-phosphate-dependent alanine racemase from Bacillus pseudofirmus OF4. J Biosci Bioeng 107:225–229

    PubMed  CAS  Google Scholar 

  • Kaczmarek W (1984) A comparison of bacterial and fungal biomass in several cultivated soils. Acta Microbiol Pol 33:239–347

    PubMed  CAS  Google Scholar 

  • Kato S, Kito Y, Hemmi H, Yoshimura T (2011) Simultaneous determination of D-amino acids by the coupling method of D-amino acid oxidase with high-performance liquid chromatography. J Chromatogr B (in press).

  • Kawasaki N, Benner R (2006) Bacterial release of dissolved organic matter during cell growth and decline: molecular origin and composition. Limnol Oceanogr 51:2170–2180

    CAS  Google Scholar 

  • Khatib A, Aqra F (2009) Nickel complexes of alanine having a preference for one chiral form over another upon crystallization. Bull Kor Chem Soc 30:2017–2020

    CAS  Google Scholar 

  • Kielland K (1995) Landscape pattern of free amino acids in arctic tundra soils. Biogeochemistry 31:85–98

    CAS  Google Scholar 

  • Kiritani K, Ohnishi K (1977) Repression and inhibition of transport system for branched-chain amino acids in Salmonella typhimurium. J Bacteriol 129:589–598

    PubMed  CAS  Google Scholar 

  • Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R (2010) D-amino acids trigger biofilm disassembly. Science 328:627–629

    PubMed  CAS  Google Scholar 

  • Koga N, Tsuji H (2009) Effects of reduced tillage, crop residue management and manure application practices on crop yields and soil carbon sequestration on an Andisol in northern Japan. Soil Sci Plant Nutr 55:546–557

    Google Scholar 

  • König WA, Rahn W, Eyem J (1977) Gas chromatographic separation of diastereoisomeric amino acid derivatives on glass capillaries: the use of pentafluoropropionyl-amino acid (+)-3methyl-2-butyl esters. J Chromatogr A 133:141–146

    Google Scholar 

  • Konno R, Isobe K, Niwa A, Yasumura Y (1988) Excessive urinary excretion of methionine in mutant mice lacking D-amino-acid oxidase activity. Metabolism 37:1139–1142

    PubMed  CAS  Google Scholar 

  • Konno R, Nagata Y, Niwa A, Yasumura Y (1989) Spontaneous excretion of D-alanine in urine in mutant mice lacking D-amino-acid oxidase. Biochem J 261:285–287

    PubMed  CAS  Google Scholar 

  • Konno R, Niwa A, Yasumura Y (1990) Intestinal bacterial origin of D-alanine in urine of mutant mice lacking D-amino-acid oxidase. Biochem J 268:263–265

    PubMed  CAS  Google Scholar 

  • Konno R, Brückner H, D’Aniello A, Fisher GH, Fujii N, Homma H (2007) D-Amino acids: a new frontier in amino acid and protein research—practical methods and protocols. Nova Science Publishers Inc., New York, p 627

    Google Scholar 

  • Konno R, Brückner H, D’Aniello A, Fisher GH, Fujii N, Homma H (2009a) D-Amino acids: practical methods and protocols, volume 1: analytical methods for D-Amino acids. Nova Science Publishers Inc., New York, p 145

    Google Scholar 

  • Konno R, Brückner H, D’Aniello A, Fisher GH, Fujii N, Homma H (2009b) D-Amino acids: practical methods and protocols, volume 2: Free D-Amino acids. Nova Science Publishers Inc., New York, p 253

    Google Scholar 

  • Konno R, Brückner H, D’Aniello A, Fisher GH, Fujii N, Homma H (2009c) D-Amino acids: practical methods and protocols, volume 3: D-Amino acids in peptides and proteins. Nova Science Publishers Inc., New York, p 130

    Google Scholar 

  • Konno R, Brückner H, D’Aniello A, Fisher GH, Fujii N, Homma H (2009d) D-Amino acids: practical methods and protocols, volume 4: enzymes involved in the metabolism of D-Amino acids. Nova Science Publishers Inc., New York, p 192

    Google Scholar 

  • Konno R, Hamase K, Maruyama R, Zaitsu K (2010) Mutant mice and rats lacking D-amino acid oxidase. Chem Biodivers 7:1450–1458

    PubMed  CAS  Google Scholar 

  • Kuhn J, Somerville RL (1974) Uptake and utilization of aromatic D-amino acids in Escherichia coli E12. Biochim Biophys Acta 332:298–312

    Google Scholar 

  • Kumari K, Singh RP, Saxena SK (1987) Effect of different factors on the movement of some amino acids in soils using thin-layer chromatography. J Liq Chrom Relat Tech 10:1299–1325

    CAS  Google Scholar 

  • Kunnas AV, Eronen M (1994) Identification of free amino-acids in peat by gas-chromatography and mass-spectrometry. Eur J Soil Sci 45:387–392

    CAS  Google Scholar 

  • Kunnas AV, Jauhiainen TP (1993) Separation and identification of free amino acid enantiomers in peat by capillary gas chromatography. J Chromatogr A 628:269–273

    CAS  Google Scholar 

  • Kuzyakov YV (1997) The role of amino acids and nucleic bases in turnover of nitrogen and carbon in soil humic fractions. Eur J Soil Sci 48:121–130

    CAS  Google Scholar 

  • Lam H, Oh D-CH, Cava F, Takacs CN, Clardy J, de Pedro MA, Waldor MK (2009) D-amino acids govern stationary phase cell wall re-modeling in bacteria. Science 325:1552–1555

    PubMed  CAS  Google Scholar 

  • Landi L, Renella G, Moreno JL, Falchini L, Nannipieri P (2000) Influence of cadmium on the metabolic quotient, L-:D-glutamic acid respiration ratio and enzyme activity: microbial biomass ratio under laboratory conditions. Biol Fertil Soils 32:8–16

    CAS  Google Scholar 

  • Li C, Yao X, Lu CD (2010) Regulation of the dauBAR operon and characterization of D-amino acid dehydrogenase DauA in arginine and lysine catabolism of Pseudomonas aeruginosa PAO1. Microbiology 156:60–71

    PubMed  Google Scholar 

  • Lipson DA, Raab TK, Schmidt SK, Monson RK (2001) An empirical model of amino acid transformations in an alpine soil. Soil Biol Biochem 33:189–198

    CAS  Google Scholar 

  • Lojkova L, Klejdus B, Formanek P, Kuban V (2006) Supercritical fluid extraction of bio-available amino acids in soils and their liquid chromatographic determination with fluorimetric detection. J Agric Food Chem 54:6130–6138

    PubMed  CAS  Google Scholar 

  • Lowe LE (1973) Amino acid distribution in forest humus layers in British Columbia. Soil Sci Soc Am J 37:569–572

    CAS  Google Scholar 

  • Luo J, de Klein C, Shepherd M, Ledgard S (2010) Effect of nitrification inhibitor on nitrous oxide emissions in pasture soils. 19th World Congress of Soil Science, Soil Solutions for a Changing World 1–6 August 2010, Brisbane, Australia, pp 59–60.

  • Manabe H, Ohira K (1981) Effects of D- and L-Ala on the growth of suspension-cultured rice, soybean and tobacco cells. Soil Sci Plant Nutr 27:383–386

    CAS  Google Scholar 

  • Manabe H, Yamauchi M, Ohira K (1981) Studies on D-amino acids in rice plants: behaviors of D-alanylglycine in rice seedlings. Plant Cell Physiol 22:333–336

    CAS  Google Scholar 

  • Martens DA, Frankenberger WT Jr (1993) Metabolism of tryptophan in soil. Soil Biol Biochem 25:1679–1687

    CAS  Google Scholar 

  • Martínez-Rodríguez S, Martínez-Gómez AI, Rodríguez-Vico F, Clemente-Jiménez JM, Las Heras-Vázquez FJ (2010) Natural occurrence and industrial applications of D-amino acids: an overview. Chem Biodivers 7:1531–1548

    PubMed  Google Scholar 

  • Meister A (1965) Biochemistry of the amino acids. Academic, New York

    Google Scholar 

  • Monreal CM, McGill WB (1985) Centrifugal extraction and determination of free amino acids in soil solutions by TLC using tritiated 1-fluoro-2.4-dinitrobenzene. Soil Biol Biochem 17:533–539

    CAS  Google Scholar 

  • Mori H, Inoue R (2010) Serine racemase knockout mice: review. Chem Biodivers 7:1573–1578

    PubMed  CAS  Google Scholar 

  • Nagata Y, Fukuda A, Sakai M, Iida T, Kawaguchi-Nagata K (2001) D-Amino acid contents of mitochondria and some purple bacteria. J Mol Catal B: Enzymatic 12:109–113

    CAS  Google Scholar 

  • Näsholm T, Högberg MN, Högberg P, Nordin A (2009) Carbon isotopes as proof for plant uptake of organic nitrogen: relevance of inorganic carbon uptake: Replay to Rasmussen and Kuzyakov. Soil Biol Biochem 41:1588–1589

    Google Scholar 

  • Németh K, Bartels H, Vogel M, Mengel K (1988) Organic nitrogen compounds extracted from arable and forest soils by electro-ultrafiltration and recovery rates of amino acids. Biol Fertil Soils 5:271–275

    Google Scholar 

  • O’Dowd RW, Hopkins DW (1998) Mineralization of carbon from D- and L-amino acids and D-glucose in two contrasting soils. Soil Biol Biochem 30:2009–2016

    Google Scholar 

  • O’Dowd RW, Parsons R, Hopkins DW (1997) Soil respiration induced by the D- and L-isomers of a range of amino acids. Soil Biol Biochem 29:1665–1671

    Google Scholar 

  • O’Dowd RW, Barraclough D, Hopkins DW (1999) Nitrogen and carbon mineralization in soil amended with D- and L- leucine. Soil Biol Biochem 31:1573–1578

    Google Scholar 

  • Ogawa T, Bando N, Sasaoka K (1976) Occurrence of D-α-amino-n-butyric acid in legume seedlings. Agric Biol Chem 40:1661–1662

    CAS  Google Scholar 

  • Ogawa T, Kimoto M, Sasaoka K (1977) Occurrence of α-aminobutyric acid in legume seedlings. Agr Biol Chem 40:1661–1662

    Google Scholar 

  • Pandey CHB, Singh GB, Singh SK, Singh RK (2010) Soil nitrogen and microbial biomass carbon dynamics in native forests and derived agricultural landuses in a humid tropical climate of India. Plant Soil 333:453–467

    CAS  Google Scholar 

  • Panizzutti R, de Souza LM, Pinheiro CM, Meyer-Fernandes JR (2006) The occurrence of free D-alanine and an alanine racemase activity in Leishmania amazonensis. FEMS Microbiol Lett 256:16–21

    PubMed  CAS  Google Scholar 

  • Pätzold R, Brückner H (2005) Mass spectrometric detection and formation of D-amino acids in processed plant saps, syrups, and fruit juice concentrates. J Agric Food Chem 53:9722–9729

    PubMed  Google Scholar 

  • Pätzold R, Schieber A, Brückner H (2005) Gas chromatographic quantification of free D-amino acids in higher vertebrates. Biomed Chromatogr 19:466–473

    PubMed  Google Scholar 

  • Paul EA, Schmidt EL (1960) Extraction of free amino acids from soil. Proc Soil Sci Soc Am 24:195–198

    CAS  Google Scholar 

  • Paul EA, Schmidt EL (1961) Formation of free amino acids in rhizosphere and nonrhizosphere soil. Soil Sci Soc Am J 25:359–362

    CAS  Google Scholar 

  • Paul EA, Tu CM (1965) Alteration of microbial activities, mineral nitrogen and free amino acid constituents of soil by physical treatment. Plant Soil 22:207–219

    CAS  Google Scholar 

  • Paul JP, Williams BL (2005) Contribution to α-amino N to extractable organic nitrogen (DON) in three soil types from the Scottish uplands. Soil Biol Biochem 37:801–803

    CAS  Google Scholar 

  • Payne TM, Rouatt JW, Katznelson H (1956) Detection of free amino acids in soil. Soil Sci 82:521–524

    CAS  Google Scholar 

  • Pérez-Suárez M, Arredondo-Moreno JT, Huber-Sannwald E, Vargas-Hernández JJ (2009) Production and quality of senesced and green litterfall in a pine-oak forest in central-northwest Mexico. Forest Ecol Manag 258:1307–1315

    Google Scholar 

  • Pistocchi A, Vizcaino P, Hauck M (2009) A GIS model-based screening of potential contamination of soil and water by pyrethroids in Europe. J Environ Manage 90:3410–3421

    PubMed  CAS  Google Scholar 

  • Pollegioni L, Piubelli L, Sacchi S, Pilone MS, Molla G (2007) Physiological functions of D-amino acid oxidases: from yeast to humans. Cell Mol Life Sci 64:1373–1394

    PubMed  CAS  Google Scholar 

  • Pollock GE, Frommhagen LH (1968) The extent of racemization of some amino acids in dilute alkali-treated protein and soil humic and fulvic acid. Anal Chem 24:18–26

    CAS  Google Scholar 

  • Pollock GE, Cheng CN, Cronin SE (1977) Determination of the D and L isomers of some protein amino acids present in soils. Anal Chem 49:2–7

    PubMed  CAS  Google Scholar 

  • Pospisilova L, Formanek P, Kucerik J, Liptaj T, Losak T, Martensson A (2011) Land use effects on carbon quality and soil biological properties in Eutric Cambisol. Acta Agricult Scand B 61:661–669

    CAS  Google Scholar 

  • Putnam HD, Schmidt AL (1959) Studies on the free infection and the capacity to utilize simple and complex organic amino acid fraction of soils. Soil Sci 87:22–27

    CAS  Google Scholar 

  • Raab TK, Lipson DA, Monson RK (1999) Soil amino acid utilization among species of the cyperaceae: plant and soil processes. Ecology 80:2408–2419

    Google Scholar 

  • Rahardjo AK, Susanto MJJ, Kurniawan A, Indraswati N, Ismadji S (2011) Modified Ponorogo bentonite for the removal of ampicillin from wastewater. J Hazard Mater 190:1001–1008

    PubMed  CAS  Google Scholar 

  • Read DJ, Bajwa R (1985) Some nutritional aspects of the biology of ericaceous mycorrhizas. Proc Roy Soc Edinb 83B:317–332

    Google Scholar 

  • Reddy MV, Kumar VPK, Reddy VR, Balashouri P, Yule DF, Cogle AL, Jangawad LS (1995) Earthworm biomass response to soil management in semi-arid tropical Alfisol agroecosystems. Biol Fertil Soils 19:317–321

    Google Scholar 

  • Reeve JR, Smith JL, Carpenter-Boggs L, Reganold JP (2008) Soil-based cycling and differential uptake of amino acids by three species of strawberry (Fragaria spp.) plants. Soil Biol Biochem 40:2547–2552

    CAS  Google Scholar 

  • Ribeiro MPA, Ferreira ALO, Giordano RLC, Giordano RC (2005) Selectivity of the enzymatic synthesis of ampicillin by E. coli PGA in the presence of high concentrations of substrates. J Mol Cat B: Enzymatic 33:81–86

    CAS  Google Scholar 

  • Rosenberg H, Ennor AH (1961) The occurrence of free D-serine in the earthworm. Biochem J 79:424–728

    PubMed  CAS  Google Scholar 

  • Rousk J, Jones DL (2010) Loss of low molecular weight dissolved organic carbon (DOC) and nitrogen (DON) in H2O and 0.5 M K2SO4 soil extracts. Soil Biol Biochem 42:2331–2335

    CAS  Google Scholar 

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone J, Caporaso G, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME 4:1340–1351

    Google Scholar 

  • Roychowdhury P, Sukul P (1997) Residue behavior of fluvalinate in chili (Capsicum annuum L.) under indian climatic condition. Bull Environ Contam Toxicol 59:723–727

    PubMed  CAS  Google Scholar 

  • Rozan P, Kuo Y, Lambein F (2000) Non protein amino acids in edible lentil and garden pea seedlings. Amino Acids 20:319–324

    Google Scholar 

  • Sánchez-de León Y, Johnson-Maynard J (2009) Dominance of an invasive earthworm in native and non-native grassland ecosystems. Biol Invasions 11:1393–1401

    Google Scholar 

  • Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    PubMed  CAS  Google Scholar 

  • Satoh S, Esashi Y (1980) D-amino-acid-stimulated ethylene production in seed tissues. Planta 149:64–68

    CAS  Google Scholar 

  • Sauheitl L, Glaser B, Dippold M, Lieber K, Weigelt A (2010) Amino acid fingerprint of a grassland soil reflect changes in plant species richness. Plant Soil 334:353–363

    CAS  Google Scholar 

  • Seiter S, Ingham ER, William RD (1999) Dynamics of soil fungal and bacterial biomass in a temperate climate alley cropping system. Appl Soil Ecol 12:139–147

    Google Scholar 

  • Schirch V, Hopkins S, Villar E, Angelaccio S (1985) Serine hydroxymethyltransferase from Escherichia coli: purification and properties. J Bacteriol 163:1–7

    PubMed  CAS  Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    PubMed  CAS  Google Scholar 

  • Schmidt S, Stewart GR (1997) Waterlogging and fire impacts on nitrogen availability and utilization in a subtropical wet heathland (wallum). Plant Cell Environ 20:1231–1241

    Google Scholar 

  • Schoenhusen U, Voigt J, Hennig U, Kuhla S, Zitnan R, Souffrant W-B (2008) Bacterial d-alanine concentrations as a marker of bacterial nitrogen in the gastrointestinal tract of pigs and cows. Vet Med (Prague) 53:184–192

    CAS  Google Scholar 

  • Schulten HR, Schnitzer M (1997) The chemistry of soil organic nitrogen: a review. Biol Fertil Soils 26:1–15

    Google Scholar 

  • Shand CA, Coutts G (2006) The effects of sheep faeces on soil solution composition. Plant Soil 285:135–148

    CAS  Google Scholar 

  • Shepherd M, Menneer J, Ledgard S, Sarathchandra U (2010) Application of carbon additives to reduce nitrogen leaching from cattle urine patches on pasture. New Zeal J Agr Res 53:263–280

    CAS  Google Scholar 

  • Simonetta MP, Pollegioni L, Casalin P, Curti B, Ronchi S (1989) Properties of D-amino acid oxidase from Rhodotorula gracilis. Eur J Biochem 180:199–204

    Google Scholar 

  • Singurindy O, Molodovskaya M, Richards BK, Steenhuis TS (2008) Gaseous nitrogen emission from soil aggregates as affected by clay mineralogy and repeated urine applications. Water Air Soil Pollut 195:285–299

    CAS  Google Scholar 

  • Sowden FJ, Ivarson KC (1966) The “free“ amino acids of soil. Can J Soil Sci 46:109–114

    CAS  Google Scholar 

  • Steinaker DF, Wilson SD (2005) Belowground litter contributions to nitrogen cycling at a northern grassland-forest boundary. Ecology 86:2825–2833

    Google Scholar 

  • Stevens ER, Esguerra M, Kim PM, Newman EA, Snyder SH, Zahs KR, Miller RF (2003) D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc Natl Acad Sci USA 100:6789–6794

    PubMed  CAS  Google Scholar 

  • Sukemori S, Ikeda S, Kurihara Y, Ito S (2003) Amino acid, mineral and vitamin levels in hydrous faeces obtained from coprophagy-prevented rats. J Anim Physiol Anim Nutr 87:213–220

    CAS  Google Scholar 

  • Svennerstam H, Ganeteg U, Bellini C, Näsholm T (2007) Comprehensive screening of Arabidopsis mutants suggests the Lysine, Histidine Transporter 1 to be involved in plant uptake of amino acids. Plant Physiol 143:1856–1860

    Google Scholar 

  • Tang SL, Howard DH (1973) Uptake and utilization of glutamic acid by Cryptococcus albidus. J Bacteriol 115:98–106

    PubMed  CAS  Google Scholar 

  • Tokuyama S (2001) Discovery and application of a new enzyme N-acylamino acid racemase. J Mol Catal B: Enzymatic 12:3–14

    CAS  Google Scholar 

  • Tsigouri AD, Menkissoglu-Spiroudi U, Thrasyvoulou A (2001) Study of tau-fluvalinate persistence in honey. Pest Manag Sci 57:467–471

    PubMed  CAS  Google Scholar 

  • Ullah S, Moore TR (2009) Soil drainage and vegetation controls of nitrogen transformation rates in forest soils, southern Quebec. J Geophys Res: Biogeosci 114(G01014):1–13

    Google Scholar 

  • Valdovinos JG, Muir RM (1965) Effects of D and L amino acids on foliar abscission. Plant Physiol 40:335–340

    PubMed  CAS  Google Scholar 

  • van Eekeren N, Bommele L, Bokhorst J, Schouten T, Reheul D, Brussaard L (2010) Anecic earthworms and associated ecosystem services in a ley-arable crop rotation. 19th World Congress of Soil Science, Soil Solutions for a Changing World 1–6 August 2010, Brisbane, Australia, pp 8–11.

  • van Langen LM, de Vroom E, van Rantwijk F, Sheldon RA (2001) Enzymatic coupling using a mixture of side chain donors affords a greener process for ampicillin. Green Chem 3:316–319

    Google Scholar 

  • Vinolas LC, Healey JR, Jones DL (2001) Kinetics of soil microbial uptake of free amino acids. Biol Fertil Soils 33:67–74

    CAS  Google Scholar 

  • Voet D, Voet JG (1995) Biochemistry. Wiley, New York

    Google Scholar 

  • Waldhier MC, Dettmer K, Gruber MA, Oefner PJ (2010) Comparison of derivatization and chromatographic methods for GC-MS analysis of amino acid enantiomers in physiological samples. J Chromatogr B 878:1103–1112

    CAS  Google Scholar 

  • Walsh CT (1989) Enzymes in the D-alanine branch of bacterial cell wall peptidoglycan assembly. J Biol Chem 264:2393–2396

    PubMed  CAS  Google Scholar 

  • Werdin-Pfisterer NR, Kielland K, Boone RD (2009) Soil amino acid composition across a boreal forest successional sequence. Soil Biol Biochem 41:1210–1220

    CAS  Google Scholar 

  • Wichern F, Lobe I, Amelung W, Müller T, Joergensen RG, Buerkert A (2004) Changes in amino acid enantiomers and microbial performance in soils from a subtropical mountain oasis in Oman abandoned for different periods. Biol Fertil Soils 39:398–406

    CAS  Google Scholar 

  • Wolosker H, Blackshaw S, Snyder SH (1999) Serine racemase: A glial enzyme synthesising D-serine to regulate glutamate-N-methyl—D-aspartate neurotransmission. PNAS 96:13409–13414

    PubMed  CAS  Google Scholar 

  • Wright DE (1962) Amino acid uptake by plant roots. Arch Biochem Biophys 97:174–180

    PubMed  CAS  Google Scholar 

  • Wu Ch, Hogg JF (1956) Free and nonprotein amino acids of Tetruhymena pyriformis. Arch Biochem Biophys 62:70–77

    PubMed  CAS  Google Scholar 

  • Wu G, Ott TL, Knabe DA, Bazer FW (1999) Amino acid composition of the fetal pig. JN 129:1031–1038

    CAS  Google Scholar 

  • Yamaguchi S, Komeda H, Asano Y (2007) New enzymatic method of chiral amino acid synthesis by dynamic kinetic resolution of amino acid amides: use of stereoselective amino acid amidases in the presence of α-amino-ε-caprolactam racemase. Appl Environ Microbiol 73:5370–5373

    PubMed  CAS  Google Scholar 

  • Yang H, Zheng G, Peng X, Qiang B, Yuan J (2003) D-Amino acids and D-Tyr-tRNATYR deacylase: stereospecifity of the translation machine revisited. FEBS Lett 552:95–98

    PubMed  CAS  Google Scholar 

  • Yeates GW, Skipp RA, Chen LY, Waghorn TS, Potter JF (2007) Temporal and spatial aspects of the influence on soil nematodes of depositing artificial pats of sheep faeces containing a range of parasite management agents. Appl Soil Ecol 37:106–117

    Google Scholar 

  • Yonebayashi K, Hattori T (1980) Improvements in the method for fractional determonation of soil organic nitrogen. Soil Sci Plant Nutr 26:469–481

    CAS  Google Scholar 

  • Yu Z, Zhang Q, Kraus TEC, Dahlgren RA, Anastasio C, Zasoski RJ (2002) Contribution of amino compounds to dissolved organic nitrogen in forest soils. Biogeochemistry 61:173–198

    CAS  Google Scholar 

  • Zahradnickova H, Husek P, Simek P (2009) GC separation of amino acid enantiomers via derivatization with heptafluorobutyl chloroformate and Chirasil-L-Val column. J Sep Sci 32:3919–3924

    PubMed  CAS  Google Scholar 

  • Zampolli MG, Basaglia G, Dondi F, Sternberg R, Szopa C, Pietrogrande MC (2007) Gas chromatograpy—mass spectrometry analysis of amino acid enantiomers as methyl chloroformate derivatives: application to space analysis. J Chromatogr A 1150:162–172

    PubMed  CAS  Google Scholar 

  • Zenk MH, Scherf H (1963) D-Tryptophan in höheren Pflanzen. Biochim Biophys Acta 71:737–738

    CAS  Google Scholar 

  • Zhang X, He H, Amelung W (2007) A GC/MS method for the assessment of 15N and 13C incorporation into soil amino acid enantiomers. Soil Biol Biochem 39:2785–2796

    CAS  Google Scholar 

  • Zhou Y, Bae-Lee M, Meyer DP, Carnali JO (1999) Soil protection of amylase from peroxygen bleach. Langmuir 15:7224–7231

    CAS  Google Scholar 

Download references

Acknowledgements

This text was created within the framework of the Grant MSM6215648902 (part 4/2/2) and the IGA Project 47/2010-2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Formanek.

Additional information

Responsible Editor: A.C. Borstlap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vranova, V., Zahradnickova, H., Janous, D. et al. The significance of D-amino acids in soil, fate and utilization by microbes and plants: review and identification of knowledge gaps. Plant Soil 354, 21–39 (2012). https://doi.org/10.1007/s11104-011-1059-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-1059-5

Keywords

Navigation