Skip to main content

Advertisement

Log in

Responses of two rice cultivars differing in seedling-stage nitrogen use efficiency to growth under low-nitrogen conditions

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Demand for low-input nitrogen sustainable rice is increasing to meet the need for environmentally friendly agriculture and thus development of rice with high nitrogen use efficiency (NUE) is a major objective. Hence, understanding how rice responds to growth under low-nitrogen conditions is essential to devise new ways of manipulating genes to improve rice NUE. In this study, using two rice varieties with different seedling-stage NUE obtained from previous field experiments, we investigated the physiological and molecular responses of young rice to low-nitrogen conditions. Our results suggest that glutamine synthetase (GS) and NADH-dependent glutamate synthase (NADH-GOGAT) play important roles in N assimilation of seedling rice roots under low-nitrogen conditions; the regulatory mechanisms of GS and NADH-GOGAT in seedling rice roots do not occur at the transcription level, and may be posttranscriptional; OsAMT1;1 play important roles in rice N acquisition by partially regulating N uptake under low-nitrogen conditions; and OsAMT1;1 and OsNRT2;1 also play important roles in rice N acquisition by partially regulating root growth and development under low-nitrogen conditions. The challenge for future studies is to characterize the functional roles of GS, NADH-GOGAT, OsAMT1;1, and OsNRT2;1 in young rice NUE using RNAi and mutant techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aslam M, Huffaker RC (1989) Role of nitrate and nitrite in the induction of nitrite reductase in leaves of barley seedlings. Plant Physiol 91:1152–1156. doi:10.1104/pp.91.3.1152

    Article  CAS  PubMed  Google Scholar 

  • Britto DT, Kronzucker HJ (2004) Biotechnology of nitrogen acquisition in rice — Implication for food security. In: Amancio S, Stulen I (eds) Plant ecophysiology, Nitrogen acquisition and assimilation in higher plants. Kluwer Academic Publishers, 261–281

  • Britto DT, Siddiqi MY, Glass ADM, Kronzucker HJ (2001) Futile transmembrane NH +4 cycling: A cellular hypothesis to explain ammonium toxicity in plants. Proc Natl Acad Sci USA 98:4255–4258. doi:10.1073/pnas.061034698

    Article  CAS  PubMed  Google Scholar 

  • Cerezo M, Tillard P, Filleur S, Munos S, Daniel-Vedele F, Gojon A (2001) Major alterations of the regulation of root NO 3 uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis. Plant Physiol 127:262–271. doi:10.1104/pp.127.1.262

    Article  CAS  PubMed  Google Scholar 

  • Chichkova S, Arellano J, Vance CP, Hernandez G (2001) Transgenic tobacco plants that overexpress alfalfa NADH-glutamate synthase have higher carbon and nitrogen content. J Exp Bot 52:2079–2087

    CAS  PubMed  Google Scholar 

  • Covelo F, Rodriguez A, Gallardo A (2008) Spatial pattern and scale of leaf N and P resorption efficiency and proficiency in Quercus robur population. Plant Soil 311:109–119. doi:10.1007/s11104-008-9662-9

    Article  CAS  Google Scholar 

  • Duan YH, Zhang YL, Ye LT, Fan XR, Xu GH, Shen QR (2007) Responses of rice cultivars with different nitrogen use efficiency to partial nitrate nutrition. Ann Bot (Lond) 99:1153–1160. doi:10.1093/aob/mcm051

    Article  CAS  Google Scholar 

  • Engineer CB, Kranz RG (2007) Reciprocal leaf and root expression of AtAmt1.1 and root architectural changes in response to nitrogen starvation. Plant Physiol 143:236–250. doi:10.1104/pp.106.088500

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Jia L, Li Y, Smith SJ, Miller AJ, Shen Q (2007) Comparing nitrate storage and remobilization in two rice cultivars that differ in their nitrogen use efficiency. J Exp Bot 58:1729–1740. doi:10.1093/jxb/erm033

    Article  CAS  PubMed  Google Scholar 

  • Gansel X, Munos S, Tillard P, Gojon A (2001) Differential regulation of the NO3- and NH4 + transporter genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: relation with long-distance and local controls by N status of the plant. Plant J 26:143–155. doi:10.1046/j.1365-313x.2001.01016.x

    Article  CAS  PubMed  Google Scholar 

  • Gazzarini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, Vonwiren N (1999) Three functional transporters for constitutive, diurnally regulated, starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11:937–947

    Article  Google Scholar 

  • Glass ADM, Britto DT, Kaiser BN, Kinghorn JR, Kronzucker HJ, Kumar A, Okamoto M, Rawat S, Siddiqi MY, Unkles SE, Vidmar JJ (2002) The regulation of nitrate and ammonium transport systems in plants. J Exp Bot 53:855–864. doi:10.1093/jexbot/53.370.855

    Article  CAS  PubMed  Google Scholar 

  • Groat RG, Vance CP (1981) Root nodule enzymes of ammonia assimilation in Alfalfa (Medicago sativa L.): developmental patterns and response to applied nitrogen. Plant Physiol 67:1198–1203. doi:10.1104/pp.67.6.1198

    Article  CAS  PubMed  Google Scholar 

  • Guo R, Li X, Christie P, Chen Q, Jiang R, Zhang F (2008) Influence of root zone nitrogen management and a summer catch crop on cucumber yield and soil mineral nitrogen dynamic in intensive production systems. Plant Soil 313:55–70. doi:10.1007/s11104-008-9679-0

    Article  CAS  Google Scholar 

  • Hirel B, Gadal P (1980) Glutamine synthetase in rice. Plant Physiol 66:619–623. doi:10.1104/pp.66.4.619

    Article  CAS  PubMed  Google Scholar 

  • Hirel B, Bertin P, Quillere I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A (2001) Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in Maize. Plant Physiol 125:1258–1270. doi:10.1104/pp.125.3.1258

    Article  CAS  PubMed  Google Scholar 

  • Kirk GJD, Kronzucker HJ (2005) The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study. Ann Bot (Lond) 96:639–646. doi:10.1093/aob/mci216

    Article  CAS  Google Scholar 

  • Kondo M, Pablico PP, Aragones DV, Agbisit R, Abe J, Morita S, Courtois B (2003) Genotypic and environmental variations in root morphology in rice genotype under upland field conditions. Plant Soil 255:189–200. doi:10.1023/A:1026142904714

    Article  CAS  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass ADM, Kirk GJD (1999) Nitrate-ammonium synergism in rice. A subcellular flux analysis. Plant Physiol 119:1041–1045. doi:10.1104/pp.119.3.1041

    Article  CAS  PubMed  Google Scholar 

  • Kronzucker HJ, Glass ADM, Siddiqi MY, Kirk GJD (2000) Comparative kinetic analysis of ammonium and nitrate acquisition by tropical lowland rice: implications for rice cultivation and yield potential. New Phytol 145:471–476. doi:10.1046/j.1469-8137.2000.00606.x

    Article  CAS  Google Scholar 

  • Kumar A, Silim S, Okamoto M, Siddiqi MY, Glass ADM (2003) Differential expression of three members of the AMT1 gene family encoding putative high-affinity NH +4 transporters in roots of Oryza sativa subspecies indica. Plant Cell Environ 26:907–914. doi:10.1046/j.1365-3040.2003.01023.x

    Article  CAS  PubMed  Google Scholar 

  • Ladha JK, Reddy PM (2003) Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant Soil 252:152–167. doi:10.1023/A:1024175307238

    Article  Google Scholar 

  • Lejay L, Tillard P, Lepetit M, Domingo OF, Filleur S, Daniel VF, Gojon A (1999) Molecular and functional regulation of two NO3- uptake systems by N- and C-status of Arabidopsis plants. Plant J 26:143–155

    Google Scholar 

  • Li SM, Shi WM (2006) Quantitative characterization of nitrogen regulation of OsAMT1;1, OsAMT1;2 and OsAMT2;2 expression. Russ J Plant Physiol 53:837–843. doi:10.1134/S102144370606015X

    Article  CAS  Google Scholar 

  • Lian X, Wang S, Zhang J, Feng Q, Zhang L, Fan D, Li X, Yuan D, Han B, Zhang Q (2006) Expression profiles of 10, 422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Mol Biol 60:617–631. doi:10.1007/s11103-005-5441-7

    Article  CAS  PubMed  Google Scholar 

  • Loqué D, Yuan LX, Kojima S, Gojon A, Wirth J, Gazzarrini S, Ishiyama K, Takahashi H, von Wirén N (2006) Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots. Plant J 48:522–534. doi:10.1111/j.1365-313X.2006.02887.x

    Article  PubMed  Google Scholar 

  • Mayer M, Ludewig U (2006) Role of AMT1;1 in NH +4 acquisition in Arabidopsis thaliana. Plant Biol 8:1–7. doi:10.1055/s-2006-923877

    Article  Google Scholar 

  • Miller AJ, Fan X, Shen Q, Smith SJ (2007) Amino acid and nitrate as signals for the regulation of nitrogen acquisition. J Exp Bot 59:111–119. doi:10.1093/jxb/erm208

    Article  PubMed  Google Scholar 

  • Ni PS (1985) Water and mineral nutrition. In: Xue YL, Xia ZA (eds) Laboratory manual for plant physiology study. Shanghai Society of Plant Physiologists, Shanghai, pp 57–66

    Google Scholar 

  • Obara M, Kajiura M, Fukuta Y, Yano M, Hayashi M, Yanaya T, Sato T (2001) Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.). J Exp Bot 52:1209–1217. doi:10.1093/jexbot/52.359.1209

    Article  CAS  PubMed  Google Scholar 

  • Rawat SR, Silim SN, Kronzucker HJ, Siddiqi MY, Glass ADM (1999) AtAMT1 gene expression and NH +4 uptake in roots of Arabidopsis thaliana: evidence for regulation by root glutamine levels. Plant J 19:143–152. doi:10.1046/j.1365-313X.1999.00505.x

    Article  CAS  PubMed  Google Scholar 

  • Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A (2006) A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabiopsis. Plant Physiol 140:909–921. doi:10.1104/pp.105.075721

    Article  CAS  PubMed  Google Scholar 

  • Shi WM, Yao J, Yan F (2009) Vegetable cultivation under greenhouse conditions leads to rapid accumulation of nutrients, acidification and salinity of soils and groundwater contsminstion in South-Eastern China. Nutr Cycl Agroecosyst 83:73–84. doi:10.1007/s10705-008-9201-3

    Article  CAS  Google Scholar 

  • Sonoda Y, Ikeda A, Saiki S, Yamaya T, Yamaguchi J (2003) Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice. Plant Cell Physiol 44:1396–1402. doi:10.1093/pcp/pcg169

    Article  CAS  PubMed  Google Scholar 

  • Suenaga A, Moriya K, Sonoda Y, Ikeda A, Wirén NV, Hayakawa T, Yamaguchi J, Yamaya T (2003) Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiol 44:206–211. doi:10.1093/pcp/pcg017

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi M, Abiko T, Yamaya T (2007) Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). J Exp Bot 58:2319–2327. doi:10.1093/jxb/erm016

    Article  CAS  PubMed  Google Scholar 

  • Taira M, Valtersson U, Burkhardt B, Ludwig RA (2004) Arabidopsis thaliana GLN2-Encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts. Plant Cell 16:2048–2058. doi:10.1105/tpc.104.022046

    Article  CAS  PubMed  Google Scholar 

  • Tony R, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A (2006) A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol 140:909–921. doi:10.1104/pp.105.075721

    Article  Google Scholar 

  • UNEP (1999) Global environment outlook 2000. United Nations Environment Programme and London Earthscan, Nairobi

    Google Scholar 

  • Von Wiren N, Gazzarrini S, Gojon A, Frommer WB (2000) The molecular physiology of ammonium uptake and retrieval. Curr Opin Plant Biol 3:254–261. doi:10.1016/S1369-5266(00)00073-X

    Article  Google Scholar 

  • Wang MY, Siddiqi MY, Ruth TJ, Glass ADM (1993) Ammonium Uptake by Rice Roots (II. Kinetics of 13NH +4 Influx across the Plasmalemma). Plant Physiol 103:1259–1267. doi:10.1104/pp.103.4.1463

    Article  CAS  PubMed  Google Scholar 

  • Xu WF, Shi WM (2006) Expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots: analysis by real-time RT-PCR. Ann Bot (Lond) 98:965–974. doi:10.1093/aob/mcl189

    Article  CAS  Google Scholar 

  • Yuan L, Loqué D, Ye F, Frommer WB, von Wirén N (2007) Nitrogen-dependence posttranscriptional regulation of the ammonium transporter AtAMT1;1. Plant Physiology 143:732–744

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Spiertz JHJ, Zhang S, Li B, Werf WVD (2008) Nitrogen economy in relay intercropping systems of wheat and cotton. Plant Soil 303:55–68. doi:10.1007/s11104-007-9442-y

    Article  CAS  Google Scholar 

  • Zhao XQ, Shi WM (2006) Expression analysis of the glutamine synthetase and glutamate synthase gene families in young rice (Oryza sativa) seedlings. Plant Sci 170:748–754. doi:10.1016/j.plantsci.2005.11.006

    Article  CAS  Google Scholar 

  • Zhao SP, Zhao XQ, Shi WM (2006) Differentiation of nitrogen uptake of rice seedlings (Oryza Sativa L.) of cultivars different in nitrogen use efficiency and its mechanism. Soil 38:400–409 in Chinese

    CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank Professor Andre Jagendorf (Cornell University) for a critical review of the manuscript. The present investigation was financially supported by grants from the National 973 Project (No. 2007CB109303), CAS Knowledge Innovation Project (No. KSCX2-YW-N-002), and the National Natural Science Foundation of China (No. 30390083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Ming Shi.

Additional information

Responsible editor: Herbert Johannes Kronzucker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, W.M., Xu, W.F., Li, S.M. et al. Responses of two rice cultivars differing in seedling-stage nitrogen use efficiency to growth under low-nitrogen conditions. Plant Soil 326, 291–302 (2010). https://doi.org/10.1007/s11104-009-0007-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0007-0

Keywords

Navigation