Skip to main content
Log in

Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation

  • Marschner Review
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

In numerous studies dealing with roots of woody plants, a description of the root system architecture is needed. During the twentieth century, several manual measurement methods were used, depending on the objectives of study. Due to the difficulties in accessing the roots and the duration of measurements, the studies generally involved a low number of root systems, were often qualitative and focused only on one specific application. Quantitative methods in plant architecture were largely developed in the last 40 years for aerial architecture. However, root systems have particular features and often need specific procedures. Since the end of the 1990s, new devices and techniques have been available for coarse root architecture measurements including volume location techniques (non-invasive or destructive) and manual or semi-automatic 3D digitising. Full 3D root system architecture dynamics was also reconstructed from partial measurements using modelling procedures. On the one hand, non-invasive and automatic techniques need more development to obtain full 3D architecture, i.e. geometry and topology. On the other hand, both one inexpensive manual and one semi-automatic digitizing procedure are now available to measure precisely and rapidly the full 3D architecture of uprooted and excavated coarse root systems. Specific software and a large number of functions are also available for an in-depth analysis of root architecture and have already been used in a dozen of research papers including a fairly large sample of mature trees. A comprehensive analysis of root architecture can be achieved by classifying individual roots in several root types through architectural analysis. The objective of this paper is both to give a detailed overview of the state of the art techniques for 3D root system architecture measurement and analysis and to give examples of applications in this field. Practical details are also given so that this paper can be used as a sort of manual for people who want to improve their practice or to enter this quite new research field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achim A, Nicoll B, Mochan S, Gardiner B (2003) Wind stability of trees on slopes. In: Ruck B, Kottmeier C, Mattheck C, Quine C and Wilhelm G (eds) Proc. Int. Conf. ‘Wind Effects on Trees’ September 16–18, 2003, Universität Karlsruhe, Germany., pp 231–237

  • Adam B (1999) POL95 – software to drive a Polhemus Fastrak 3 SPACE 3D digitiser Version 1.0. UMR PIAF INRA-UBP, Clermont-Ferrand

  • Adam B, Sinoquet H, Godin C, Donès N (1999) 3A – software for the acquisition of plant architecture. Version 2.0. UMR PIAF INRA-UBP, Clermont-Ferrand., 20 pp

  • al Hagrey SA (2007) Geophysical imaging of root-zone, trunk, and moisture heterogeneity. J Exp Bot 58:839–854

    Google Scholar 

  • Atger C, Edelin C (1994) Premières données sur l’architecture comparée des systèmes racinaires et caulinaires. Can J Bot 72:963–975

    Google Scholar 

  • Atger C, Edelin C (1995) A case of sympodial branching based on endogenous determinism in root system: Platanus hybrida. Brot Acta Bot Gallica 142:23–30

    Google Scholar 

  • Balandier P, Lacointe A, le Roux X, Sinoquet H, Cruiziat P, le Dizes S (2000) SIMWAL: a structural-functional model simulating single walnut tree growth in response to climate and pruning. Ann For Sci 57:571–585

    Google Scholar 

  • Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407

    PubMed  Google Scholar 

  • Barton CVM, Montagu KD (2004) Detection of tree roots and determination of root diameters by ground penetrating radar under optimal conditions. Tree Physiol 24:1323–1331

    PubMed  Google Scholar 

  • Berntson GM (1994) Root systems and fractals – how reliable are calculations of fractal dimensions. Ann Bot 73:281–284

    Google Scholar 

  • Berntson GM, Stoll P (1997) Correcting for finite spatial scales of self-similarity when calculating the Fractal Dimensions of real-world structures. Proc R Soc Lond B Biol Sci 264:1531–1537

    Google Scholar 

  • Bert D, Danjon F (2006) Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). For Ecol Manag 222:279–295

    Google Scholar 

  • Berthier S (2001) Effets des sollicitations aérodynamiques sur la croissance et le développement du pin maritime (Pinus pinaster Aït.): influence sur la morphogénèse aérienne et racinaire, et sur la formation du bois de coeur. PhD Thesis No. 2443, Université Bordeaux I, France, 142 pp

  • Blaise F, Fourcaud T, Stokes A, de Reffye P (2000) A model simulating interactions between plant shoot an root architecture in a non-homogeneous environment. In: Stokes A (ed) Proc. Int. Conf. “The Supporting Roots of Trees and Woody Plants: Form, Function and Physiology”, Bordeaux, 20–24 July, 1998, Series: ‘Developments in plant and soil sciences’, vol 87. Kluwer, Dordrecht, pp 61–76

  • Böhm W (1979) In: Billing WD, Golley F, Lange OL, Olson JS (eds) Methods of studying root systems ecological studies n° 33. Springer, Berlin, Germany 188 pp

    Google Scholar 

  • Brown TN, Kulasiri D (1994) Simulation of Pinus radiata root system structure for ecosystem management applications. Simulation 62:42–57

    Google Scholar 

  • Brown DP, Pratum TK, Bledsoe C, Ford ED, Cothern SC, Perry D (1991) Noninvasive studies of conifer roots: nuclear magnetic resonance (NMR) imaging of douglas-fir seedlings. Can J For Res 21:1559–1566

    Google Scholar 

  • Brown TN, Kulasiri D, Gaunt RE (1997) A root-morphology based simulation for plant/soil microbial ecosystem modelling. Ecol Model 99:275–287

    Google Scholar 

  • Brunner I, Godbold DL (2007) Tree roots in a changing world. J For Res 12:78–82

    Google Scholar 

  • Butnor JR, Doolittle JA, Kress L, Cohen S, Johnsen KH (2001) Use of ground-penetrating radar to study tree roots in the southeastern United States. Tree Physiol 21:1269–1278

    PubMed  CAS  Google Scholar 

  • Butnor JR, Doolittle JA, Johnsen KH, Samuelson L, Stokes T, Kress L (2003) Utility of ground-penetrating radar as a root biomass survey tool in forest systems. Soil Sci Soc Am J 67:1607–1615

    Article  CAS  Google Scholar 

  • Chopard J (2004) 3D modelling of water transfers in soil and roots systems. In: Godin C, Hanan J, Kurth W, Lacointe A, Takenaka A, Prusinkiewicz P, de Jong T, Beveridge C, Andrieu B (eds) Proc. 4th Int. Workshop on Functional-Structural Plant Models, 7–11 June 2004 Montpellier. pp 154–158. UMR AMAP, Montpellier, France

  • Clausnitzer V, Hopmans JW (1994) Simultaneous modeling of transient three-dimensional root growth and soil water flow. Plant Soil 164:299–314

    Google Scholar 

  • Colas H (1997) Association de cultures cocotier-cacaoyer Modélisation de leur système racinaire. Etudes préliminaires sur l’interaction racinaire et la consommation en eau de deux plantes. Thèse de doctorat – Université Montpellier II. 277p

  • Colin F, Danjon F, Wehrlen L (1995) Etudes racinaires au sein du programme “Croissance” de l’INRA (Quercus petraea et Pinus pinaster). Rev For Fr 46:165–172

    Article  Google Scholar 

  • Collet C, Löf M, Pagès L (2006) Root system development of oak seedlings analysed using an architectural model. Effects of competition with grass. Plant Soil 279:367–383

    CAS  Google Scholar 

  • Commins PJ, McBratney AB, Koppi AJ (1991) Development of a technique for the measurement of root geometry in the soil using resin-impregnated blocks and image-analysis. J Soil Sci 42:237–250

    Google Scholar 

  • Coners H, Leuschner C (2002) In situ water absorption by tree fine roots measured in real time using miniature sap-flow gauges. Funct Ecol 16:696–703

    Google Scholar 

  • Coutts MP (1983) Root architecture and tree stability. Plant Soil 71:171–188

    Google Scholar 

  • Coutts MP (1987) Developmental processes in tree root systems. Can J For Res 17:761–767

    Google Scholar 

  • Coutts MP, Lewis GJ (1983) When is structural root system determined in Sitka spruce? Plant Soil 71:155–160

    Google Scholar 

  • Coutts MP, Nielsen CN, Nicoll BC (1999) The development of symmetry, rigidity and anchorage in the structural root system of conifers. Plant Soil 217:1–15

    Google Scholar 

  • Danjon F, Bert D, Godin C, Trichet P (1999a) Structural root architecture of 5-year-old Pinus pinaster measured by 3D digitising and analysed with AMAPmod. Plant Soil 217:49–63

    Google Scholar 

  • Danjon F, Sinoquet H, Godin C, Colin F, Drexhage M (1999b) Characterisation of structural tree root architecture using 3D digitising and AMAPmod software. Plant Soil 211:241–258

    CAS  Google Scholar 

  • Danjon F, Berthier S, Gouskou K (2004) Root system topological and fractal branching analysis in P. Pinaster. In: Godin C, Hanan J, Kurth W, Lacointe A, Takenaka A, Prusinkiewicz P, de Jong T, Beveridge C, Andrieu B (eds) Proc. 4th Int. Workshop on Functional-Structural Plant Models, 7–11 June 2004 Montpellier. UMR AMAP, Montpellier, France, pp 75–78

  • Danjon F, Fourcaud T, Bert D (2005) Root architecture and wind-firmness of mature Pinus pinaster. New Phytol 168:387–400

    PubMed  Google Scholar 

  • Danjon F, Pagès L, Descorps MC (2006a) Root diameter as predictor of borne root volume Estimating the missing root characteristics in Pinus pinaster (Ait) root systems. Proc. COST E38 meeting, Sede Boqer, Israël, 4–8 February 2006

  • Danjon F, Bert D, Galionis D (2006b) Carbon storage in Pinus Pinaster coarse roots: assessing infra-density distribution in mature root system. Proc. COST E38 meeting, Rovaniemi, Finland, 10–12 September 2006

  • Danjon F, Barker D, Drexhage M, Stokes A (2007a) Using 3D root architecture in models of shallow slope stability. Ann Bot (in press). DOI 10.1093/aob/mcm199

  • Danjon F, Barker D, Drexhage M, Stokes A (2007b) Analysis of 3D structural root architecture data of trees grown on slopes. Proc. 2nd international symposium on plant growth modelling, simulation, visualization and applications. Beijing (China P. R.), November 13–17, 2006, IEEE-proceedings (in press)

  • Danjon F, Bert D, Porté A, Meredieu C, Trichet P, Lagane F, Issenhuth B (2007c) Effect of fertilisation on 3D root architecture in 12-year-old Pinus pinaster trees. Proc. 4th Int. Symp. on Dynamics of Physiological Processes in Roots of Woody Plants. 16th–19th September 2007, Bangor, UK, p 36

  • Da Silva D, Boudon F, Godin C, Puech O, Smith C, Sinoquet H (2006) A critical appraisal of the box counting method to assess the fractal dimension of tree crowns. Lecture Notes in Computer Sciences (Proceedings of ISVC 2006), 4291, 751–760

  • de Reffye P (1979) Modélisation de l’architecture des arbres par des processus stochastiques. Simulation spatiale des modèles tropicaux sous l’effet de la pesanteur. Application au Coffea robusta. Thèse de doctorat d’Etat. Université de Paris-Sud Orsay, 194 p

  • de Reffye P, Elguero E, Costes E (1991) Growth units construction in trees: a stochastic approach. Acta Biotheor 39:325–342

    Google Scholar 

  • de Reffye P, Houllier F, Blaise F, Barthélémy D, Dauzat J, Auclair D (1995) A model simulating above- and below-ground tree architecture with agroforestry applications. Agroforest Syst 30:175–197

    Google Scholar 

  • Di Iorio A, Lasserre B, Scippa GS, Chiatante D (2005) Root system architecture of Quercus pubescens trees growing on different sloping conditions. Ann Bot 95:351–361

    PubMed  Google Scholar 

  • Di Iorio A, Lasserre B, Scippa GS, Chiatante D (2007) Pattern of secondary thickening in a Quercus cerris root system. Tree Physiol 27:407–412

    PubMed  Google Scholar 

  • Donès N, Adam B, Sinoquet H (2006) PiafDigit – software to drive a Polhemus Fastrak 3 SPACE 3D digitiser and for the acquisition of plant architecture. Version 1.0. UMR PIAF INRA-UBP, Clermont-Ferrand 15 pp

  • Doussan C, Vercambre G, Pagès L (1999) Water uptake by two contrasting root systems (maize, peach tree): results from a model of hydraulic architecture. Agronomie 19:255–263

    Google Scholar 

  • Doussan C, Pagès L, Pierret A (2003) Soil exploration and resource acquisition by plant roots: an architectural and modelling point of view. Agronomie 23:419–431

    Google Scholar 

  • Drexhage M, Chauvière M, Colin F, Nielsen CNN (1999) Development of structural root architecture and allometry of Quercus petraea. Can J For Res 29:600–608

    Google Scholar 

  • Drouet J-L, Pagès L (2003) GRAAL: a model of GRowth, Architecture and carbon ALlocation during the vegetative phase of the whole maize plant. Model description and parameterisation. Ecol Model 165:147–173

    CAS  Google Scholar 

  • Drouet J-L, Pagès L (2007) GRAAL-CN: a model of GRowth, Architecture and ALlocation for carbon and nitrogen dynamics within whole plants formalised at the organ level. Ecol Model 206:231–249

    CAS  Google Scholar 

  • Dupuy L (2003) Modélisation de l’ancrage racinaire des arbres forestiers. PhD thesis, Université de Bordeaux I, France, n° 2788. http://archives.disvu.u-bordeaux1.fr/pdf/2003/DUPUY_LIONEL_2003.pdf

  • Dupuy L, Drénou C, Fourcaud T (2003a) Sols, racines et ancrage des arbres forestiers. Forêt Entreprise 153:39–43

    Google Scholar 

  • Dupuy L, Fourcaud T, Lac P, Stokes A (2003b) Modelling the influence of morphological and mechanical properties on the anchorage of root systems. In: Ruck B, Kottmeier C, Mattheck C, Quine C, Wilhelm G (eds) Proc. Int. Conf. ‘Wind Effects on Trees’ September 16–18, 2003, Universität Karlsruhe, Germany, pp 315–322

  • Dupuy L, Fourcaud T, Stokes A (2005a) A numerical investigation into factors affecting the anchorage of roots in tension. Eur J Soil Sci 56:319–327

    Google Scholar 

  • Dupuy L, Fourcaud T, Stokes A (2005b) A numerical investigation into the influence of soil type and root architecture on tree anchorage. Plant Soil 278:119–134

    CAS  Google Scholar 

  • Dupuy L, Fourcaud T, Stokes A, Danjon F (2005c) A density-based approach for the modelling of root architecture: application to Maritime pine (Pinus pinaster Ait.) root systems. J Th Biol 236:323–334

    CAS  Google Scholar 

  • Dupuy L Fourcaud F, Lac P, Stokes A (2007) A generic 3D finite element model of tree anchorage integrating soil mechanics and real root system architecture. Am J Bot 94:1506–1514

    Google Scholar 

  • Edwards JG (2003) Field based 3D digitising of woody root architecture – techniques and results. Proc. 3rd Int. Symp. on Dynamics of Physiological Processes in Woody Roots, 28 Sept–3 Oct, Perth, Australia p 36

  • Eis S (1974) Root system morphology of Western Hemlock, Western Red Cedar, and Douglas-Fir. Can J For Res 4:28–38

    Article  Google Scholar 

  • Eshel A (1998) On the fractal dimensions of a root system. Plant Cell Environ 21:247–251

    Google Scholar 

  • Eshel A, Srinivasa Rao C, Benzioni A, Waisel Y (2001) Allometric relationships in young seedlings of faba bean (Vicia faba L.) following removal of certain root types. Plant Soil 233:161–166

    CAS  Google Scholar 

  • Eschenbach C (2005) Emergent properties modelled with the functional structural tree growth model ALMIS: computer experiments on resource gain and use. Ecol Model 186:470–488

    Google Scholar 

  • Fayle DCF (1968) Radial growth in tree root systems – distribution, timing, anatomy. Tech. Rep. No. 9. Faculty of Forestry, University of Toronto, Toronto, Ont. Canada. 183 pp

  • Ferraro P, Godin C (2000) A distance measure between plant architectures. Ann For Sci 57:445–461

    Google Scholar 

  • Ferraro P, Godin C (2003) An edit distance between quotiented trees. Algorithmica 36:1–39

    Google Scholar 

  • Ferraro P, Godin C, Prusinkiewicz P (2004) A structural method for assessing self-similarity in plants. In: Godin C, Hanan J, Kurth W, Lacointe A, Takenaka A, Prusinkiewicz P, de Jong T, Beveridge C, Andrieu B (eds) Proc. 4th Int. Workshop on Functional-Structural Plant Models, 7–11 June 2004 Montpellier, UMR AMAP, Montpellier, France, pp 56–60

  • Fisher JB, Honda H (1979) Branch geometry and effective leaf area: a study of Terminalia branching pattern. 2 Survey of real trees. Am J Bot 66:645–655

    Google Scholar 

  • Fitter AH (1985) Functional significance of root morphology and root system architecture. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil: plants, microbes and animals. British Ecological Society Special Publication no. 4. Blackwell, Oxford, UK, pp 87–106

    Google Scholar 

  • Fitter AH (1987) An architectural approach to the comparative ecology of plant root systems. New Phytol 106(Suppl):61–67

    Google Scholar 

  • Fitter AH (2002) Characteristics and functions of root systems. In: Weisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. 3rd edn. Marcel Dekker, New York, pp 15–32

    Google Scholar 

  • Fitter AH, Stickland TR (1992a) Fractal characterization of root-system architecture. Funct Ecol 6:632–635

    Google Scholar 

  • Fitter AH, Stickland TR (1992b) Architectural analysis of plant-root systems 3 studies on plants under field conditions. New Phytol 121:243–248

    Google Scholar 

  • Foroutan-Pour K, Dutilleul P, Smith DL (1999) Soybean canopy development as affected by population density and intercropping with corn: fractal analysis in comparison with other quantitative approaches. Crop Sci 39:1784–1791

    Article  Google Scholar 

  • Fourcaud T, Danjon F, Dupuy L (2003) Numerical analysis of the anchorage of Maritime pine trees in connection with root structure. In: Ruck B, Kottmeier C, Mattheck C, Quine C, Wilhelm G (eds)Proc. Int. Conf. ‘Wind effects on trees’ September 16–18, 2003, Universität Karlsruhe, Germany, pp 323–330

  • Fourcaud T, Dupuy L, Sellier D, Ancelin P, Lac P (2004) Analysis of the relationship between tree structure and biomechanical functions. In: Godin C, Hanan J, Kurth W, Lacointe A, Takenaka A, Prusinkiewicz P, de Jong T, Beveridge C, Andrieu B (eds) Proc. 4th Int. Workshop on Functional-Structural Plant Models, 7–11 June 2004 Montpellier, UMR AMAP, Montpellier, France, pp 302–306

  • Fourcaud F, Ji J-N, Zhang Z-Q, Stokes A (2007) Understanding the impact of root morphology on overturning mechanisms: a modelling approach. Ann Bot (in press). DOI 10.1093/aob/mcm245

  • Gärtner H, Denier C (2006) Application of a 3D Laser scanning device to acquire the structure of whole root systems – a pilot study. In: Heinrich I, Gärtner H, Monbaron M, Schleser G (eds) TRACE – Tree Rings in Archaeology, Climatology and Ecology 4, 288–294

  • Gijsman AJ, Floris J, van Noordwijk M, Brouwer G (1991) An inflatable minirhizotron system for root observations with improved soil/tube contact. Plant Soil 134:261–269

    Google Scholar 

  • Godin C (2000) Representing and encoding plant architecture: a review. Ann For Sci 57:413–438

    Google Scholar 

  • Godin C, Caraglio Y (1998) A multiscale model of plant topological structures. J Theor Biol 191:1–46

    PubMed  Google Scholar 

  • Godin C, Costes E, Caraglio Y (1997) Exploring plant topological structure with the AMAPmod software: an outline. Silva Fennica 31:355–366

    Google Scholar 

  • Godin C, Costes E, Sinoquet H (1999a) A method for describing plant architecture which integrates topology and geometry. Ann Bot 84:343–357

    Google Scholar 

  • Godin C, Guedon Y, Costes E (1999b) Exploration of a plant architecture database with the AMAPmod software illustrated on an apple tree hybrid family. Agronomie 19:163–184

    Google Scholar 

  • Gray DH, Leiser AT (1982) Biotechnical slope protection and erosion control. Van Nostrand Reinhold, New York

    Google Scholar 

  • Green SR, Clothier BE (1995) Root water uptake by kiwifruit wines following partial wetting of the root zone. Plant Soil 173:317–328

    CAS  Google Scholar 

  • Gregory PJ (2006) Plant roots: growth, activity and interaction with soils. Blackwell, Oxford

    Google Scholar 

  • Gregory PJ, Hutchison DJ, Read DB, Jenneson PM, Gilboy WB, Morton EJ (2003) Non-invasive imaging of roots with high resolution X-ray micro-tomography. Plant Soil 255:351–359

    CAS  Google Scholar 

  • Gross R (1995) Construction application of hydraulic soil excavation. In: Watson G, Weeley D (eds) Proceedings: trees and building sites. International Society of Arboricultural, Savoy, IL, pp 177–184

    Google Scholar 

  • Gross R, Julene M (2002) Supersonic air jets preserve tree roots in underground pipeline installation. USDA Forest Service Gen. Tech. Rep. PSW-GTR-184

  • Hallé F, Oldemann RAA (1970) Essai sur l’architecture et la dynamique de croissance des arbres tropicaux. Masson, Paris 178 pp

    Google Scholar 

  • Hanan JS, Hearn AB (2003) Linking physiological and architectural models of cotton. Agric Syst 75:47–77

    Google Scholar 

  • Hanan JS, Room PM (1997) Practical aspects of virtual plant research. In: Michalewicz MT (ed) Plants to ecosystems. Advances in computational life sciences. CSIRO Publishing, Brisbane, Australia, pp 28–44

    Google Scholar 

  • Hanan JS, Room PM (2002) Floradig, user manual. CPAI, Brisbane, Australia, p 52

    Google Scholar 

  • Hanan JS, Wang Y (2004) Floradig: a configurable program for capturing plant architecture. In: Godin C, Hanan J, Kurth W, Lacointe A, Takenaka A, Prusinkiewicz P, de Jong T, Beveridge C, Andrieu B (eds) 4th Int. Workshop on Functional-Structural Plant Models, 7–11 June 2004 Montpellier, UMR AMAP, Montpellier, France, pp 407–411

  • Hanan J, Loch B, McAleer T (2004) Processing laser scanner plant data to extract structural information. In: Godin C, Hanan J, Kurth W, Lacointe A, Takenaka A, Prusinkiewicz P, de Jong T, Beveridge C, Andrieu B (eds) Proc. 4th Int. Workshop on Functional-Structural Plant Models, 7–11 June 2004, Montpellier, UMR AMAP, Montpellier, France, pp 9–12

  • Harrington CA, DeBell DS (1996) Above- and below-ground characteristics associated with wind toppling in a young Populus plantation. Trees 11:109–118

    Google Scholar 

  • Heeraman DA, Hopmans JW, Clausnitzer V (1997) Three dimensional imaging of plant roots in situ with X-ray Computed Tomography. Plant Soil 189:167–179

    CAS  Google Scholar 

  • Henderson R, Ford ED, Renshaw E (1983a) Morphology of the structural root system of sitka spruce 2. Computer simulation of rooting pattern. Forestry 56:137–153

    Google Scholar 

  • Henderson R, Ford ED, Renshaw E, Deans JD (1983b) Morphology of the structural root system of Sitka spruce 1. Analysis and quantitative description. Forestry 56:121–135

    Google Scholar 

  • Hendricks JJ, Hendrick RL, Wilson CA, Mitchell RJ, Pecot SD, Guo D (2006) Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. J Ecol 94:40–57

    Google Scholar 

  • Heth D, Donald DGM (1978) Root biomass of Pinus radiata D Don. S Afr For J 107:60–70

    Google Scholar 

  • Heuret P, Meredieu C, Coudurier T, Barthélémy D (2006) Ontogenetic trends in the morphological features of main stem annual shoots of Pinus pinaster (Pinaceae). Am J Bot 93:1577–1587

    Google Scholar 

  • Jourdan C (1995) Modélisation de l’architecture et du développement du système racinaire du palmier à huile. PhD thesis – Université de Montpellier II, p 243

  • Jourdan C (2005) Manuel d’utilisation du logiciel Rhizodigit V1.3, p 12, CIRAD, Montpellier, France

  • Jourdan C, Rey H (1997a) Architecture and development of the oil-palm (Elaeis guineensis Jacq.) root system. Plant Soil 189:33–48

    CAS  Google Scholar 

  • Jourdan C, Rey H (1997b) Modelling and simulation of the architecture and development of the oil-palm (Elaeis guineensis Jacq.) root system. I. The model. Plant Soil 190:217–233

    CAS  Google Scholar 

  • Jourdan C, Rey H (1997c) Modelling and simulation of the architecture and development of the oil-palm (Elaeis guineensis Jacq.) root system. II. Estimation of root parameters using the RACINES postprocessor. Plant Soil 190:235–246

    CAS  Google Scholar 

  • Jourdan C, Rey H, Guedon Y (1995) Architectural analysis and modelling of the branching process of the young oil-palm root system. Plant Soil 177:63–72

    CAS  Google Scholar 

  • Kaestner A, Schneebeli M, Graf F (2006) Visualizing three-dimensional root networks using computed tomography. Geoderma 136:459–469

    Google Scholar 

  • Kenkel NC, Walker DJ (1996) Fractals in the biological sciences. Coenoses 11:77–100

    Google Scholar 

  • Khuder H (2007) Etude de l’effet d’une pente sur l’architecture et les propriétés mécaniques des systèmes racinaires de semis d’arbres. PhD thesis – Université de Bordeaux I

  • Khuder H, Danjon F, Stokes A, Fourcaud T (2006) Growth response and root architecture of black locust seedlings growing on slopes and subjected to mechanical perturbation. In: Salmen L (ed) Proc. 5th Plant Biomechanics Conference – Stockholm, August 28–September 1, pp 299–303

  • Khuder H, Stokes A, Danjon F, Gouskou K, Lagane F (2007) Is it possible to manipulate root anchorage in young trees? Plant Soil 294:87–102 erratum Plant Soil 295:293–295)

    CAS  Google Scholar 

  • Kokutse N, Fourcaud T, Kokou K, Neglo K, Lac P (2006) 3D numerical modelling and analysis of forest structure on hill slopes stability. In: Marui H, Marutani T, Watanabe N, Kawabe H, Gonda Y, Kimura M, Ochiai H, Ogawa K, Fiebiger G, Heumader J, Rudolf-Miklau F, Kienholz H, Mikos M (eds) Interpraevent, 2006: disaster mitigation of Debris flows, slope failures and landslides, September 25–27, 2006, Niigata, Japan. Universal Academy Press, Tokyo, Japan, pp 561–567

    Google Scholar 

  • Köstler JN, Brückner E, Bibelriether H (1968) Die Wurzeln der Waldbäume. Paul Parey, Hamburg, Germany 284 p

    Google Scholar 

  • Kramer MG, Sollins P, Sletten RS (2004) Soil carbon dynamics across a windthrow disturbance sequence in southeast Alaska. Ecology 85:2230–2244

    Google Scholar 

  • Kurth W (1994) Growth grammar interpreter GROGRA 24 Berichte des Forschungszentrum Waldökosysteme, vol B. Universität Göttingen, p 192

  • Kurth W (2000) Towards universality of growth grammars: models of Bell, Pagès, and Takenaka revisited. 2nd International workshop on functional-structural tree models, Clermont-Ferrand, France, 12–14 October 1998. Ann For Sci 57:543–554

    Google Scholar 

  • Lang ARG (1973) Leaf orientation of a cotton plant. Agric Meteorol 11:37–51

    Google Scholar 

  • Le Goff N, Ottorini JM (2001) Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North-East France. Ann For Sci 58:1–13

    Google Scholar 

  • Lindenmayer A (1968) Mathematical models for cellular interaction in development, I and II. J Theor Biol 18:280–315

    PubMed  CAS  Google Scholar 

  • Lindsey PA, Gross R, Milano R (1995) An investigation to assess the importance of street infrastructure improvement on roots of adjacent cork oak tree. In: Watson G, Neely D (eds) Trees and building sites. International Society of Arboricultural, Savoy, Illinois, pp 22–32

    Google Scholar 

  • Lo E, Wang Zhang M, Lechowicz M, Messier C, Nikinmaa E, Perttunen J, Sievanen R (2001) Adaptation of the LIGNUM model for simulations of growth and light response in Jack pine. For Ecol Man 150:279–291

    Google Scholar 

  • Lontoc-Roy M, Dutilleul P, Prasher SO, Smith DL (2004) 3D visualisation and quantitative analysis of plant root systems using helical CT scanning. In: Proc. 4th Int. Workshop on Functional-Structural Plant Models, 7–11 June 2004 Montpellier. Eds C Godin, J Hanan, W Kurth, A Lacointe, A Takenaka, P Prusinkiewicz, T de Jong, C Beveridge, B Andrieu. pp 13–16. UMR AMAP, Montpellier, France

  • Lontoc-Roy M, Dutilleul P, Prasher SO, Han LW, Smith DL (2005) Computed tomography scanning for three-dimensional imaging and complexity analysis of developing root systems. Can J Bot 83:1434–1442

    Google Scholar 

  • Lynch JP, Nielsen KL, Davis RD, Jablokow AG (1997) SimRoot: modelling and visualization of root systems. Plant Soil 188:139–151

    CAS  Google Scholar 

  • Mandelbrot BB (1975) Stochastic-models for earths relief, shape and fractal dimension of coastlines, and number-area rule for islands. Proc Natl Acad Sci U S A 72:3825–3828

    PubMed  CAS  Google Scholar 

  • Mason EG (1985) Causes of juvenile instability of Pinus radiata in New Zealand. N Z J For Sci 15:263–280

    Google Scholar 

  • McMinn RG (1963) Characteristics of Douglas-fir root systems. Can J Bot 41:105–122

    Article  Google Scholar 

  • Mou P, Mitchell RJ, Jones RH (1997) Root distribution of two tree species under a heterogeneous nutrient environment. J Appl Ecol 34:645–656

    Google Scholar 

  • Moulia B, Sinoquet H (1993) Tree-dimensional digitizing systems for plant canopy geometrical structure: a review. In: Varlet-Granchet C, Bonhomme R, Sinoquet H (eds) Crop structure and light microclimate. Characterization and applications. INRA Editions, Paris, France, pp 183–193

    Google Scholar 

  • Mulatya JM, Wilson J, Ong CK, Deans JD, Sprent JI (2002) Root architecture of provenances, seedlings and cuttings of Melia volkensii: implications for crop yield in dryland agroforestry. Agrofor Syst 56:65–72

    Google Scholar 

  • Nadezhdina N, Cermák J, Neruda J, Prax A, Ulrich R, Nadezhdin V, Gaspárek J, Pokorný E (2006) Roots under the load of heavy machinery in spruce trees. Eur J For Res 125:111–128

    Google Scholar 

  • Nicoll BC, Easton EP, Milner A, Walker CD, Coutts MP (1997) Wind stability factors in tree selection: distribution of biomass within root systems of sitka spruce clones. In: Coutts MP, Grace J (eds) Wind and wind related damage to trees. Cambridge University Press, Cambridge, pp 276–301

    Google Scholar 

  • Nicoll BC, Berthier S, Achim A, Gouskou K, Danjon F, van Beek LPH (2006) The architecture of Picea sitchensis structural root systems on horizontal and sloping terrain. Trees 20:701–712

    Google Scholar 

  • Nielsen CCN, Hansen JK (2006) Root CSA-Root biomass prediction models in six tree species and improvement of models by inclusion of root architectural parameters. Plant Soil 280:339–356

    CAS  Google Scholar 

  • Nieuwenhuis MA, Wills JM (2002) The effect of cultivation technique on root architecture of young Sitka spruce (Picea sitchensis (Bong.) Carr.) trees on surface water gleys. New For 24:195–213

    Google Scholar 

  • Noguchi K, Konôpka B, Satomura T, Kaneko S, Takahashi M (2007) Biomass and production of fine roots in Japanese forests. J For Res 12:83–95

    Google Scholar 

  • Nygren P, Ozier-Lafontaine H, Lu M (2004) A comparison of two fractal models for describing whole tree structure. In: Godin C, Hanan J, Kurth W, Lacointe A, Takenaka A, Prusinkiewicz P, de Jong T, Beveridge C, Andrieu B (eds) Proc. 4th Int. Workshop on Functional-Structural Plant Models, 7–11 June 2004 Montpellier, UMR AMAP, Montpellier, France, pp 110–114

  • Oliveira RS, Dawson TE, Burgess SSO, Nepstad DC (2005) Hydraulic redistribution in three Amazonian trees. Oecologia 145:354–363

    PubMed  Google Scholar 

  • Oppelt AL, Kurth W, Dzierzon H, Jentschke G, Godbold DL (2000) Structure and fractal dimensions of root systems of four co-occurring fruit tree species from Botswana. Ann For Sci 57:463–475

    Google Scholar 

  • Oppelt AL, Kurth W, Godbold DL (2001) Topology, scaling relations and Leonardo’s rule in root systems from African tree species. Tree Physiol 21:117–128

    PubMed  CAS  Google Scholar 

  • Oppelt AL, Kurth W, Godbold DL (2005) Contrasting rooting patterns of some arid-zone fruit tree species from Botswana – II. Coarse root distribution. Agrofor Syst 64:13–24

    Google Scholar 

  • Ozier-Lafontaine H, Lecompte F, Sillon J-F (1999) Fractal analysis of the root architecture of Gliricidia sepium for the spatial prediction of root branching, size and mass. Model development and evaluation in agroforestry. Plant Soil 209:167–180

    CAS  Google Scholar 

  • Pagès L (1999a) Root system architecture: from its representation to the study of its elaboration. Agronomie 19:295–304

    Google Scholar 

  • Pagès L (1999b) Why model root system architecture? In: Stokes A (ed) Proc conf “The supporting roots of trees and woody plants: form, function and physiology”, Bordeaux, 20–24 July, 1998. Series: ‘Developments in plant and soil sciences’, vol 87. Kluwer, Dordrecht, pp 187–194

  • Pagès L (2002) Modelling root system architecture. In: Weisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. 3rd edn. Marcel Dekker, New York, pp 175–186

    Google Scholar 

  • Pagès L, Asseng S, Pellerin S, Diggle A (2000a) Modelling root system growth and architecture. In: Smith AL (ed) Root methods: a handbook. Springer, Berlin, pp 113–146

    Google Scholar 

  • Pagès L, Doussan C, Vercambre G (2000b) An introduction on below-ground environment and resource acquisition, with special reference on trees. Simulation models should include plant structure and function. Ann For Sci 57:513–520

    Google Scholar 

  • Pagès L, Vercambre G, Drouet J-L, Lecompte F, Collet C, Le Bot J (2004) Root Typ: a generic model to depict and analyse the root system architecture. Plant Soil 258:103–119

    Google Scholar 

  • Pateña G, Ingram KT (2000) Digital acquisition and measurement of peanut root minirhizotron images. Agron J 92:541–544

    Article  Google Scholar 

  • Perttunen J, Sievanen R (2005) Incorporating Lindenmayer systems for architectural development in a functional-structural tree model. Ecol Model 181:479–491

    Google Scholar 

  • Plourde A (2007) Croissance, développement et architecture des structures aériennes et souterraines de pins gris (Pinus banksiana Lamb.) dans un peuplement naturel et une plantation. PhD Thesis, Université du Quebec à Chicoutimi et à Montréal, p 141

  • Pradal C, Dufour-Kowalski S, Boudon F, Dones N (2007) The architecture of OpenAlea: a visual programming and component based software for plant modelling. Proc. 5th Int. Workshop on functional-structural plant models, 4–9 November, Napier, New Zealand, pp 25–1 to 25–4

  • Prusinkiewicz P (2004) Modeling plant growth and development. Curr Opin Plant Biol 7:79–83

    PubMed  CAS  Google Scholar 

  • Prusinkiewicz P, Rolland-Lagan AG (2006) Modelling plant morphogenesis. Cur Opin Plant Biol 9:83–88

    CAS  Google Scholar 

  • Puhe J (1994) Die Wurzelentwicklung der Fichte (Picea abies (L.) Karst.) bei unterschiedlichen chemischen Bodenbedingungen. Berichte des Forschungszentrums Waldökosysteme Reihe A (Göttingen) 108 128 pp

  • Reubens B, Poesen J, Danjon F, Geudens G, Muys B (2007a) The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees 21:385–402

    Google Scholar 

  • Reubens B, Windey J, Danjon F, Poesen J, Muys B (2007b) Root system architecture of woody species important for erosion control in Tigray, Northern Ethiopia. Proc. 4th Int. Symp. on Dynamics of Physiological Processes in Roots of Woody Plants. 16th–19th September 2007, Bangor, UK, p 87

  • Richardson A (2000) Coarse root elongation rate estimates for interior Douglas-fir. Tree Physiol 20:825–829

    PubMed  Google Scholar 

  • Richardson AD, zu Dohna H (2003) Predicting root biomass from branching patterns of Douglas-fir root systems. Oikos 100:96–104

    Google Scholar 

  • Ritson P, Sochacki S (2003) Measurement and prediction of biomass and carbon content of Pinus pinaster trees in farm forestry plantations, south-western Australia. For Ecol Manag 175:103–117

    Google Scholar 

  • Rizzo DM, Gross R (2000) Distribution of armillaria on pear root systems and a comparison of root excavation techniques. In: Stokes A (ed) Proc. conf. “The supporting roots of trees and woody plants: form, function and physiology”, Bordeaux, 20–24 July, 1998. Series: ‘Developments in plant and soil sciences’, vol 87. Kluwer, Dordrecht, pp 61–76

  • Salas E, Ozier-Lafontaine H, Nygren P (2004) A fractal root model applied for estimating the root biomass and architecture in two tropical legume tree species. Ann For Sci 61:337–345

    Google Scholar 

  • Segura V, Ouangraoua A, Ferraro P, Costes E (2007) Comparison of tree architecture using tree edit distances: application to 2-year-old apple hybrids. Euphytica (in press). DOI 10.1007/s10681-007-9430-6

  • Shinozaki K, Yoda K, Hozumi K, Kira T (1964) A quantitative analysis of plant form – the pipe model theory. I. Basic analysis. Jpn J Ecol 14:97–105

    Google Scholar 

  • Sievanen R, Nikinmaa E, Nygren P, Ozier-Lafontaine H, Perttunen J, Hakula H (2000) Components of functional-structural tree models. Ann For Sci 57:399–412

    Google Scholar 

  • Sinoquet H, Rivet P (1997) Measurement and visualization of the architecture of an adult tree based on a three-dimensional digitising device. Trees 11:265–270

    Google Scholar 

  • Sinoquet H, Rivet P, Godin C (1997) Assessment of the three-dimensional architecture of walnut trees using digitising. Silva Fennica 31:265–273

    Google Scholar 

  • Soethe N (2006) Structure and function of root systems at different altitudes of a south Ecuadorian montane forest. PhD Thesis, Humboldt-Universität zu Berlin, p 146

  • Soethe N, Lehmann J, Engels C (2006) Root morphology and anchorage of six native tree species from a tropical montane forest and an elfin forest in Ecuador. Plant Soil 279:173–185

    CAS  Google Scholar 

  • Soethe N, Lehmann J, Engels C (2007) Root tapering between branching points should be included in fractal root system analysis. Ecol Model 207:363–366

    Google Scholar 

  • Stoeckeler JH, Kluender WA (1938) The hydraulic method of excavating the root systems of plants. Ecology 19:355–369

    Google Scholar 

  • Stokes A (2002) Biomechanics of tree root anchorage. In: Weisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. 3rd edn. Marcel Dekker, New York, pp 175–186

    Google Scholar 

  • Stokes A, Fourcaud T, Hruska J, Cermak J, Nadyezhdhina N, Nadyezhdin V, Praus L (1999) An evaluation of different methods to investigate root systems architecture of urban trees in situ: I. ground-penetrating radar. J Arboriculture 28:1–9

    Google Scholar 

  • Stone EL, Kalisz PJ (1991) On the maximum extent of tree roots. For Ecol Manag 46:59–102

    Google Scholar 

  • Sundström E, Keane M (1999) Root architecture, early development and basal sweep in containerized and bare-rooted Douglas fir (Pseudotsuga menziesii). Plant Soil 217:65–78

    Google Scholar 

  • Tamasi E, Stokes A, Lasserre B, Danjon F, Berthier S, Fourcaud T, Chiatante D (2005) Influence of wind loading on root system development and architecture in oak seedlings (Quercus robur L.). Trees 19:374–384

    Google Scholar 

  • Tatsumi J (1995) Fractal geometry in root systems: quantitative evaluation of distribution pattern. Jpn J Crop Sci 64:50–57

    Google Scholar 

  • Taylor HM, Upchurch DR, Mcmichael BL (1990) Applications and limitations of rhizotrons and minirhizotrons for root studies. Plant Soil 129:29–35

    Google Scholar 

  • Teobaldelli M, Zenone, Puig D, Matteucci M, Seufert G, Sequeira V (2007) Structural tree modelling of above and belowground poplar tree using direct and indirect measurements: Terrestrial laser scanning, WGROGRA, AMAPmod and JRC-Reconstructor. In: Prusinkiewicz P and Hanan J (eds) Proc. 5th International Workshop on Functional Structural Plant Models, November 4–9, 2007, Napier, New Zealand, pp 20–1 to 20–4

  • Thomas C, Walk CT, Jaramillo R, Lynch JP (2006) Architectural tradeoffs between adventitious and basal roots for phosphorus acquisition. Plant Soil 279:347–366

    Google Scholar 

  • Tobin B, Cermák J, Chiatante D, Danjon F, Di Iorio A, Dupuy L, Eshel A, Jourdan C, Kalliokoski T, Laiho R, Nadezhdina N, Nicoll B, Pagès L, Silva J, Spanos I (2007) Towards developmental modelling of tree root systems. Plant Biosyst 141:481–501

    Google Scholar 

  • Van Beek LPH, Wint J, Cammeraat LH, Edwards JP (2005) Observation and simulation of root reinforcement on abandoned Mediterranean slopes. Plant Soil 278:55–74

    CAS  Google Scholar 

  • van der Heijden GWAM, de Visser PHB, Heuvelink E (2007) Measurements for functional-structural plant models. In: Vos J, Marcelis LFM, de Visser PHB, Struik PC, Evers JB (eds) Functional-structural plant modelling in crop production. Wageningen UR Frontis Series, vol 22. Springer, Belin, pp 13–25

  • van Noordwijk M, Mulia R (2002) Functional branch analysis as tool for fractal scaling above- and belowground trees for their additive and non-additive properties. Ecol Model 149:41–51

    Google Scholar 

  • van Noordwijk M, Purnomosidhi P (1995) Root architecture in relation to tree-soil-crop interactions and shoot pruning in agroforestry. Agrofor Syst 30:161–173

    Google Scholar 

  • van Noordwijk M, Spek LY, Willigen P (1994) Proximal root diameter as predictor of total root size for fractal branching models. 1. Theory. Plant Soil 164:107–117

    Google Scholar 

  • Vercambre G, Pagès L, Doussan C, Habib R (2003) Architectural analysis and synthesis of the plum tree root system in an orchard using a quantitative modelling approach. Plant Soil 251:1–11

    CAS  Google Scholar 

  • Walk TC, Van Erp E, Lynch JP (2004) Modelling applicability of fractal analysis to efficiency of soil exploration by roots. Ann Bot 94:119–128

    PubMed  Google Scholar 

  • Walk TC, Jaramillo R, Lynch JP (2006) Architectural tradeoffs between adventitious and basal roots for phosphorus acquisition. Plant Soil 279:347–366

    CAS  Google Scholar 

  • Watson A, O’Loughlin C (1990) Structural root morphology and biomass of three age-classes of Pinus radiata. N Z J For Sci 20:97–110

    Google Scholar 

  • West BJ, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    PubMed  CAS  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1999) The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284:1677–1679

    PubMed  CAS  Google Scholar 

  • Wilson BF (1975) Distribution of secondary thickening in tree root systems. In: Torrey JG, Clarkson DT (eds) The development and function of roots. Academic, London, pp 197–219

    Google Scholar 

Download references

Acknowledgements

Financial support was provided by the EC Eco-slopes QLRT-2000-00289 project and the Flemish Interuniversity Council (VLIR). We also thank the reviewers and the editor for their very helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Danjon.

Additional information

Responsible Editor: Yongguan Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danjon, F., Reubens, B. Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation. Plant Soil 303, 1–34 (2008). https://doi.org/10.1007/s11104-007-9470-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-007-9470-7

Keywords

Navigation